Home
Class 12
MATHS
For a, b,c in R-{0}, let (a+b)/(1-ab), b...

For `a`, `b`,`c in R-{0}`, let `(a+b)/(1-ab)`, `b`, `(b+c)/(1-bc)` are in `A.P.` If `alpha`, `beta` are the roots of the quadratic equation
`2acx^(2)+2abcx+(a+c)=0`, then the value of `(1+alpha)(1+beta)` is

A

`0`

B

`1`

C

`-1`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Given `(a+B)/(1-ab)`, `b`, `(b+c)/(1-bc)` are in `A.P.`
`impliesb-(a+b)/(1-ab)=(b+c)/(1-bc)-b`
`implies (-a(b^(2)+1))/(1-ab)=(c(b^(2)+1))/(1-bc)`
`impliesa+c=2abc`
Now, given quadratic equation is
`2acx^(2)+2abcx+2abc=0`
(Substituting `a+c=2abc` and then cancelling `2ac` )
`impliesx^(2)+bx+b=0`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the quadratic equation ax^(2)+bx+c=0 and 3b^(2)=16 ac then

If alpha,beta are the roots of the quadratic equation ax^(2)+bx+c=0and3b^(2)=16ac then-

If alphaandbeta be the roots of the quadratic equation 2x^(2)+2x-3=0 , then find the values of alpha+beta+1

If alpha,beta are the roots of the quadratic equation ax^2+bx+c=0 and 3b^2=16ac then

If the roots of the quadratic equation 5x^2 - 2x - 3 = 0 be alpha and beta , find the value of (1)/(alpha)+(1)/(beta) .

If one root of the equation x^2 - ax + b = 0 be alpha and beta , then the value of (1)/(alpha) + (1)/(beta) is

Two roots of the equation ax^2 +bx +c=0 is alpha,beta then find the value of 1/alpha^3 + 1/beta^3

Two roots of the equation ax^2 +bx +c=0 is alpha,beta then find the value of alpha^2 + beta^2

IF alpha,beta be the roots of the equation ax^2+bx+c=0 find the value of (aalpha^2)/(balpha+c)-(abeta^2)/(b beta+c)

IF alpha and beta be the roots of the equation ax^2+bx+c=0 , find the values of 1/alpha^3+1/beta^3