Home
Class 12
MATHS
If a(1),a(2)a(3),….,a(15) are in A.P and...

If `a_(1),a_(2)a_(3),….,a_(15)` are in `A.P` and `a_(1)+a_(8)+a_(15)=15`, then `a_(2)+a_(3)+a_(8)+a_(13)+a_(14)` is equal to

A

`25`

B

`35`

C

`10`

D

`15`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Given `A.P.` is `a_(1),a_(2),a_(3),…….,a_(15)`
`a_(1)+a_(15)=a_(2)+a_(14)=….=2a_(8)`
`a_(1)+a_(15)+a_(8)=(3)/(2)(a_(1)+a_(15))=15`
`impliesa_(1)+a_(15)=10`
`a_(2)+a_(3)+a_(8)+a_(13)+a_(14)=2(a_(1)+a_(15))+a_(8)`
`=2(10)+5=25`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),…, a_(40) are in A.P. and a_(1) + a_(5) + a_(15) + a_(26) + a_(36) + a_(40) = 105 then sum of the A.P. series is-

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .

If a_(1), a_(2), a_(3),…, a_(n) be in A.P. Show that, (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) +….+(1)/(a_(n-1)a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1), a_(2) , a_(3),…,a _(n+1) are in A. P. then the value of (1)/(a _(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+...+(1)/(a_(n)a_(n+1)) is-

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(a_(1)a_(3)) + (1)/(a_(3)a_(5)) +...+ (1)/(a_(2n-1).a_(2n+1)) = (n)/(a_(1)a_(2n+1))

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(4000)=50 . Then |a_(1)-a_(4001)| is equal to

IF a_(1),a_(2),a_(3),"...."a_(10) be in AP and h_(1),h_(2),h_(3),"...."h_(10) be in HP. If a_(1)=h_(1)=2 and a_(10)=h_(10)=3 , then find value of a_(4)h_(7) .

If positive integers a_(1), a_(2), a_(3),… are ion A.P. such that a_(8) +a_(10) =24, then the value of a_(9) is-

If A_(1), A_(2),..,A_(n) are any n events, then