Home
Class 12
MATHS
Given the sequence of numbers x(1),x(2),...

Given the sequence of numbers `x_(1),x_(2),x_(3),x_(4),….,x_(2005)`, `(x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+3)=(x_(3))/(x_(3)+5)=...=(x_(2005))/(x_(2005)+4009)`, the nature of the sequence is

A

`A.P.`

B

`G.P.`

C

`H.P.`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Given `(x_(1))/(x_(1)+1)=(x_(2))/(x_(2)+3)=(x_(3))/(x_(3)+5)=...=(x_(2005))/(x_(2005)+4009)`
`impliesx_(1)=(lambda)/(1-lambda)`, `x_(2)=(3lambda)/(1-lambda)`, `x_(3)=(5lambda)/(1-lambda)`,……
Hence , `x_(1),x_(2),x_(3),…..,x_(2005)` are in arithmetic progression.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If (x^(3))/((2x-1) (x+2) (x-3))=A+ (B)/(2x-1) +(C )/(x+2) + (D)/(x-3), then the value of A is-

The sequence {x_(k)} is defined by x_(k+1)=x_(k)^(2)+x_(k) and x_(1)=(1)/(2) . Then [(1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)] (where [.] denotes the greatest integer function) is equal to

Value of |{:(1+x_(1),,1+x_(1)x,,1+x_(1)x^(2)),(1+x_(2),,1+x_(2)x,,1+x_(2)x^(2)),(1+x_(3),,1+x_(3)x,,1+x_(3)x^(2)):}| depends upon

Find the minimum value of Z=3x_(1)+5x_(2) subject to x_(1) +3x_(2)ge3,x_(1)+x_(2)ge2 and x_(1),x_(2)ge0

Find the sum to n terms of the following series: (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+(x^(4)+(1)/(x^(4)))^(2)+...

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).

Factorise : x^(3)+(1)/(x^(3))-2x-(2)/(x)

Consider the system of linear equations: x_(1) + 2x_(2) + x_(3) = 3 2x_(1) + 3x_(2) + x_(3) = 3 3x_(1) + 5x_(2) + 2x_(3) = 1 The system has