Home
Class 12
MATHS
If b-c, bx-cy, bx^(2)-cy^(2) (b,c ne 0) ...

If `b-c`, `bx-cy`, `bx^(2)-cy^(2)` (`b,c ne 0`) are in `G.P`, then the value of `((bx+cy)/(b+c))((bx-cy)/(b-c))` is

A

`x^(2)`

B

`-x^(2)`

C

`2y^(2)`

D

`3y^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `(bx-cy)^(2)=(b-c)(bx^(2)-cy^(2))`
`b^(2)x^(2)+c^(2)y^(2)-2bxy=b^(2)x^(2)-bcy^(2)-bcx^(2)+c^(2)y^(2)`
`bcx^(2)+bcy^(2)-2bcxy=0`
`bc(x-y)^(2)=0`
`impliesx=y` (`:'b`, `c ne 0`)
`implies((bx+cy)/(b+c))((bx-cy)/(b-c))=x^(2)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Solve the equations : (b-ax)/(bx-a)=(d-cx)/(dx-c)

If a gt 0 and discriminant of ax^(2)+2bx+c=0 is negative, then the value of - |(a,b,ax+b),(b, c,bx+c),(ax+b,bx+c,0)| is -

If a ,b ,c , are in A.P then the roots of the equation ax^(2)-2bx+c=0

If the roots of x^2-bx+c=0 be two consecutive integers, then the value of b^2-4c will be-

If int e^(ax) sin bx dx=(e^(ax))/(sqrt(a^(2)+b^(2)))sin(bx+m)+c , then the value of m is-

If u=ax+by+cz , v=ay+bz+cx , w=az+bx+cy , then the value of |{:(a,b,c),(b,c,a),(c,a,b):}|xx|{:(x,y,z),(y,z,x),(z,x,y):}| is

If (a-bx)/(a+bx) =(b- cx)/(b+cx), then a,b,c are in

If a, b, c are in G.P. and the equation ax^(2) + 2bx + c = 0 and dx^(2) + 2ex + f = 0 have a common root, then show that (d)/(a), (e)/(b), (f)/(c ) are in A.P.

If 2a , b , 2c are in A.P. where a , b , c are R^(+) , then the expression f(x)=(ax^(2)-bx+c) has