Home
Class 12
MATHS
If x gt 1, y gt 1, z gt 1 are in G.P., t...

If `x gt 1`, `y gt 1`, `z gt 1` are in `G.P.`, then `log_(ex)e`, `log_(ey)e` , `log_(ez)e` are in

A

`A.P.`

B

`H.P.`

C

`G.P.`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Let `x=e`, `y=e^(2)`, `z=e^(3)`
`:.` Given terms are `log_(e^(2))e`, `log_(e^(3))e`, `log_(e^(4))e`
or `(1)/(2),(1)/(3),(1)/(4)` which are in `H.P.`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If agt1,bgt1andcgt1 are in G.P., then show that 1/(1+log_(e)a),1/(1+log_(e)b)and1/(1+log_(e)c) are in H.P.

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

Evaluate int(log_(ex)e*log_(e^(2)x)e*log_(e^(3)x)e)/(x)dx .

If x gt 0 , show that, log (1+x) lt x

Prove that log_(1/y)x xx log_(1/z)yxx log_(1/x)z=-1

If x,y,z are in G.P prove that log_(a)^(x)+log_(a)^(z)=(2)/(log_(y)^(a)),[x,y,a gt0]

If x, y and z be greater than 1, then the value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)| is

If log_(0.2) (x-1) gt log_(0.04) (x+5) then

I=int(log_e( log_ex))/(x(log_ex))dx is equal to