Home
Class 12
MATHS
If x,y,z are in G.P. (x,y,z gt 1) , then...

If `x,y,z` are in `G.P. (x,y,z gt 1)` , then `(1)/(2x+log_(e)x)`, `(1)/(4x+log_(e)y)`, `(1)/(6x+log_(ez)z)` are in

A

`A.P.`

B

`G.P.`

C

`H.P.`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` As `x,y,z` are in `G.P.`
`impliese^(2x)x,e^(4x)y,e^(6x)z` are in `G.P.`
`implieslog_(e)(e^(2x)x),log_(e)(e^(4x)y),log_(e)(e^(6x)z)` are in `A.P.`
`implies(1)/(2x+log_(e)x),(1)/(4x+log_(e)y),(1)/(6x+log_(e)z)` are in `H.P.`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int{(1)/(log_(e)x)-(1)/((log_(e)x)^(2))}dx

If x gt 1 , y gt 1 , z gt 1 are in G.P. , then log_(ex)e , log_(ey)e , log_(ez)e are in

If x,y,z are in G.P prove that log_(a)^(x)+log_(a)^(z)=(2)/(log_(y)^(a)),[x,y,a gt0]

Draw the graph of y=1/(log_(e)x)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Calculate : log_(x^2)x xx log_(y^2)y xx log_(z^2)z

If a,b,c are in A.P and x,y,z are in G.P then prove that a^((b-c)log_(a)^(x))xxb^((c-a)log_(b)^(y))xxc^((a-b)log_(c )^(z))=1

Draw the graph of y= x ^((1)/(log_(e)x)) .

If a,b,c are in A.P and x,y,z are in G.P prove that (b-c) logx+(c-a) log y+(a-b) log z=0

If x, y and z be greater than 1, then the value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)| is