Home
Class 12
MATHS
sum(i=1)^(oo)sum(j=1)^(oo)sum(k=1)^(oo)(...

`sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k))` is equal to (where `|a| gt 1`)

A

`(a-1)^(-3)`

B

`(3)/(a-1)`

C

`(3)/(a^(3)-1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `S=sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k))`, `|a| gt 1` or `0 lt (1)/(|a|) lt 1`
`=sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i)a^(j)a^(k))`
`=(sum_(i=1)^(oo)(1)/(a^(i)))(sum_(j=1)^(oo)(1)/(a^(j)))(sum_(k=1)^(oo)(1)/(a^(k)))`
`=((1)/(a))/(1-(1)/(a))*((1)/(a))/(1-(1)/(a))*((1)/(a))/(1-(1)/(a))=(1)/((a-1)^(3))`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

sum_(i = 1)^n sum_(j = 1)^i sum_(k = 1)^j 1 is equal to

sum_(k=1)^ook(1-1/n)^(k-1) =?

sum_(r=1)^nr^2-sum_(m=1)^nsum_(r=1)^mr is equal to

int_(-oo)^(oo)(1)/(1+x^2) dx

The value of sum_(r=2)^(oo) (1+2+....+(r-1))/(r!) is equal to

Evaluate sum_(k=1)^11(2+3^k)

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

If x = sum _(n =0) ^(oo) a^(n) , y = sum _(n=0) ^(oo) b ^(n), z= sum _(n=0)^(oo) c^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1, thenx,y,z are in-

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to