Home
Class 12
MATHS
If S(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...

If `S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!)`, then `S_(50)=`

A

`52!`

B

`1+49xx51!`

C

`52!-1`

D

`50xx51!-1`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `T_(n)=(n^(2)-n+1)n!`
`=(n^(2)-1)n!-(n-2)n!`
`T_(n)=(n-1)(n+1)!-(n-2)n!`
`:. S_(n)=1+(n-1)(n+1)!`
`:.S_(30)=1+49xx51!`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) +... +(.^(n)C_(n))^(n) , then maximum value of [(S_(n+1))/(S_(n))] is "_____" . (where [*] denotes the greatest integer function)

If S_(n) = 1 + (1)/(2) + (1)/(2^(2))+….+(1)/(2^(n-1)) , find the least value of n for which 2- S_(n) lt (1)/(100) .

(x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=

lim_(nrarroo) {(1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))} is equal to-

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

lim_(nrarroo) [(1)/(n)+(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)))/(n^(2))+...+(sqrt(n^(2)-(n-1)^(2)))/(n^(2))]

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)^(2)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+.....+(C_(n)^(2))/(n+1)=((2n+1)!)/({(n+1)!}^(2))

If .^(2n+1)P_(n-1): .^(2n-1)P_(n)=3:5 , find n.