Home
Class 12
MATHS
The sum of the series (9)/(5^(2)*2*1)+(1...

The sum of the series `(9)/(5^(2)*2*1)+(13)/(5^(3)*3*2)+(17)/(5^(4)*4*3)+...` upto infinity

A

`1`

B

`(9)/(5)`

C

`(1)/(5)`

D

`(2)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `T_(r )=(4r+1)/(5^(r )r(r-1))`, `r ge 2`
`=(5r-(r-1))/(5^(r)r(r-1))`
`=(1)/(5^(r-1)(r-1))-(1)/(5^(r)r)`
`:.sum_(r=2)^(oo)T_(r )=(((1)/(5^(1)*1)-(1)/(5^(2)*2))+((1)/(5^(2)*2)-(1)/(5^(3)*3))+((1)/(5^(3)*3)-(1)/(5^(4)*4))+...oo)`
`(1)/(5)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Comprehension|7 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

Find the sum of the series, (1^(2))/(3)+(1^(2)+2^(2))/(5)+(1^(2)+2^(2)+3^(2))/(7)+.. upto n th term.

The sum of the infinite series ((1)/(3))^(2)+(1)/(3)((1)/(3))^(4)+(1)/(5)((1)/(3))^(6)+...... is

Find the sum of the series, (1^(3))/(1)+(1^(3)+2^(3))/(1+3) + (1^(3)+2^(3)+3^(3))/(1+3+5)+.... upto nth term.

The sum of the infinite series 1+(1)/(|__ul(2))+(1.3)/(|__ul(4))+(1.3.5)/(|__ul(6))+…….. is

If the sum of the first ten terms pf the series (1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)....., "is " (16)/(5)m ,then m is equal to

Find the sum of the series 2/(1xx2)+5/(2xx3)xx2+(10)/(3xx4)xx2^2+(17)/(4xx5)xx2^3+ ton terms.

The sum of the series: 1/(1.2) -1/(2.3) +1/(3.4)-1/(4.5) ………. infty is:

The sum of the series 1^3 - 2^3 + 3^3 - ....+ 9^3 =

Find the sum of the series 1/(1.2.3.4)+1/(2.3.4.5)+1/(3.4.5.6)+....... upto n terms.