Home
Class 12
MATHS
In the expansion of ((x)/(costheta)+(1)/...

In the expansion of `((x)/(costheta)+(1)/(xsintheta))^(16)`, if `l_(1)` is the least value of the term independent of `x` when `(pi)/(8) le theta le (pi)/(4)` and `l_(2)` is the least value of the term independent of `x` when `(pi)/(16) le theta le (pi)/(8)`, then the value of `(l_(2))/(l_(1))` is

A

`8`

B

`32`

C

`16`

D

`64`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` General term `T_(r+1)=^(16)C_(r )((x)/(costheta))^(16-r)((1)/(xsintheta))^(r )`
`=^(16)C_(r )(1)/((costheta)^(16-r)(sintheta)^(r ))*x^(16-2r)`
If this term is independent of `x`, then `16-2r=0`
`:.` The term independent of `x=^(16)C_(8)(1)/(cos^(8)thetasin^(8)theta)`
`=^(16)C_(8)(2^(8))/(sin^(8)2theta)`
`l_(1)=^(16)C_(8)(2^(8))/(sin^(8)"(pi)/(2))=^(16)C_(8)2^(8)`
`l_(2)=^(16)C_(8)(2^(8))/(sin^(8)"(pi)/(4))=^(16)C_(8)*(2^(8))/(((1)/(sqrt(2)))^(8))=^(16)C_(8)2^(12)`
`:.(l_(2))/(l_(1))=(2^(12))/(2^(8))=2^(4)=16`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le x le 1, then the minimum value of (x^(2) +x+1) is-

Solve : cos theta cos 2 theta cos 3 theta =(1)/(4) (0 le theta le pi)

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Find the values of theta which satisfy tan^(2)theta = 1/3, - pi le theta le pi .

sin theta -2 = cos2theta when 0 le theta le 2pi

sin theta + sin 5 theta = sin 3theta (0 le theta le 2pi)

The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(x-sintheta))i s 2theta (b) theta (c) theta/2 (d) independent of theta

Let f(x)= (1-tanx)/(4x-pi) when 0 le x le (pi)/(2) and x ne (pi)/(4) , if f(x) is continuous at x=(pi)/(4) , then the value of f((pi)/(4)) is -

The solution set of (5+4 cos theta) (2 cos theta+1) =0 in the interval 0 le theta le pi is-

If 0 le x le (pi)/(2) and 81^(sin ^(2)x)+81^(cos^(2) x)=30, then the value of x is -