Home
Class 12
MATHS
Given (1-x^(3))^(n)=sum(k=0)^(n)a(k)x^(k...

Given `(1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k)` then the value of `3*a_(k-1)+a_(k)` is (a) `"^(n)C_(k)*3^(k)` (b) `"^(n+1)C_(k)*3^(k)` (c) `"^(n+1)C_(k)*3^(k-1)` (d) `"^(n)C_(k-1)*3^(k)`

A

`"^(n)C_(k)*3^(k)`

B

`"^(n+1)C_(k)*3^(k)`

C

`"^(n+1)C_(k)*3^(k-1)`

D

`"^(n)C_(k-1)*3^(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Given `{(1-x)(1+x+x^(2))}^(n)`
`=sum_(k=0)^(n)a_(k)x^(k)((1-x)^(3n))/((1-x)^(2k))`
`{(1+x+x^(2))/((1-x)^(2))}=sum_(k=0)^(n)a_(k)(x^(k))/((1-x)^(2k))`
`{((1-x)^(2)+3x)/((1-x)^(2))}^(n)=sum_(k=0)^(n)a_(k){(x)/((1-x)^(2))}^(k)`
`{1+(3x)/((1-x)^(2))}^(n)=sum_(k=0)^(n)a_(k){(x)/((1-x)^(2))}^(k)`
Put `(x)/((1-x)^(2))=t`
`(1+3t)^(n)=sum_(k=0)^(n)a_(k)t^(k)`
`3*a_(k-1)+a_(k)=3("coefficient of"t^(k-1))+"coefficient of" t^(k)`
`=3.3^(k-1)'^(n)C_(k-1)+3^(k)'^(n)C_(k)`
`=3^(k)("^(n)C_(k-1)+^(n)C_(k))`
`=3^(k)('^(n+1)C_(k))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)C_(3)=k.n(n-1)(n-2) then k=

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

sum_(k=1)^ook(1-1/n)^(k-1) =?

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

(n)p_(r)=k^(n)C_(n-r),k=

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Value of sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

If int tan^(-1)x dx=xtan^(-1)x+k log(1+x^(2))+C , then the value of k is-

If Isum_(k=1)^(98)int_k^(k+1)(k+1)/(x(x+1))dx ,t h e n: