Home
Class 12
MATHS
The value of sum(r=1)^n(sum(p=0)^(r-1) ^...

The value of `sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p)` is equal to (a) `4^(n)-3^(n)+1` (b) `4^(n)-3^(n)-1` (c) `4^(n)-3^(n)+2` (d) `4^(n)-3^(n)`

A

`4^(n)-3^(n)+1`

B

`4^(n)-3^(n)-1`

C

`4^(n)-3^(n)+2`

D

`4^(n)-3^(n)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` `sum_(r=1)^(n)"^(n)C_(r )((1+2)^(r )-2^(r ))`
`=sum_(r=1)^(n)"^(n)C_(r )*3^(r )-sum_(r=1)^(n)'^(n)C_(r )*2^(r )`
`=(4^(n)1-1)-(3^(n)-1)=4^(n)-3^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=1)^(n+1)(sum_(k=1)^n ^kC_(r-1)) (where r, k, n in N ) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6