Home
Class 12
MATHS
Consider the sequence ('^(n)C(0))/(1.2.3...

Consider the sequence `('^(n)C_(0))/(1.2.3),('^(n)C_(1))/(2.3.4),('^(n)C_(2))/(3.4.5),....,` if `n=50` then greatest term is

A

`30^(th)`

B

`24^(th)`

C

`26^(th)`

D

`27^(th)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` Let `T_(r+1) ge T_(r )`
`implies("^(n)C_(r ))/((r+1)(r+2)(r+3)) ge ('^(n)C_(r-1))/((r )(r+1)(r+2))`
`implies("^(n)C_(r ))/('^(n)C_(r-1)) ge (r+3)/(r )`
`implies(n-r+1)/(r ) ge (r+3)/(r )`
`impliesr le ((n-2)/(2))`
For `n=50impliesr ge 24`
So `24^(th)` and `25^(th)` terms of sequence are greatest.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

The value of the sum (.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+(.^(n)C_(3))^(2)+....+(.^(n)C_(n))^(2) is -

Show : x-^(n)C_(1)(x+y)+^(n)C_(2)(x+2y)-^(n)C_(3)(x+3y)+....=0

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If .^(n)C_(1),^(n)C_(2)and^(n)C_(3) are in A.P ., find n .

If m=.^(n)C_(2) show that , .^(m)C_(2)=3.^(n+1)C_(4)

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

Show that (.^(4n)C_(2n))/(.^(2n)C_(n))=(1.3.5......(4n-1))/({1.3.5......(2n-1)}^(2)) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that if ngt7 then .^(n-1)C_(3)+.^(n-1)C_(4)gt^(n)C_(3)