Home
Class 12
MATHS
If sum(r=0)^(n){("^(n)C(r-1))/('^(n)C(r ...

If `sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24)`, then `n` is equal to (a) 3 (b) 4 (c) 5 (d) 6

A

`3`

B

`4`

C

`5`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Let `t_(r )=('^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))=(1)/(('^(n)C_(r ))/('^(n)C_(r-1))+1)=(1)/((n-r+1)/(r )+1)`
`:.t_(r )=(r )/(n+1)`
Now,
`S=sum_(r=0)^(n){t_(r )}^(3)`
`impliesS=sum_(r=0)^(n)(r^(3))/((n+1)^(3))=(1)/((n+1)^(3))sum_(r=0)^(n)r^(3)`
`impliesS=(1)/((n+1)^(3)){(n(n+1))/(2)}^(2)impliesS=(n^(2))/(4(n+1))`
Now, `S=(25)/(24)` (given) `:.n=5`
Promotional Banner

Similar Questions

Explore conceptually related problems

.^(n-1)C_(r)+^(n-1)C_(r-1)=

(n)p_(r)=k^(n)C_(n-r),k=

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=.^(n+2)C_(r)(2lerlen) .

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then find n

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

If (n-r+1)^(n)C_(r-1)=mxx^(n)C_(r) then m=

If sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64) where n, p in N , then (a) p=3 (b) p=4 (c) n=7 (d) n=6