Home
Class 12
MATHS
("^(m)C(0)+^(m)C(1)-^(m)C(2)-^(m)C(3))+(...

`("^(m)C_(0)+^(m)C_(1)-^(m)C_(2)-^(m)C_(3))+('^(m)C_(4)+^(m)C_(5)-^(m)C_(6)-^(m)C_(7))+..=0` if and only if for some positive integer `k`, `m=` (a) 4k (b) 4k+1 (c) 4k-1 (d) 4k+2

A

`4k`

B

`4k+1`

C

`4k-1`

D

`4k+2`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` Consider,
`(costheta-isintheta)^(m)`
`=.^(m)C_(0)cos^(m)theta-^(m)C_(1)cos^(m-1)thetaisintheta+...+^(m)C_(m)(-isintheta)^(m)`.......`(i)`
`(costheta+isintheta)^(m)`
`=^(m)C_(0)cos^(m)theta+^(m)C_(1)cos^(m-1)thetaisintheta+...+^(m)C_(m)(isintheta)^(m)`.......`(ii)`
Adding `(1)` and `(2)` , we get
`2cosmtheta=2['^(m)C_(0)cos^(m)theta-^(m)C_(2)cos^(m-2)thetasin^(2)theta....]`.......`(iii)`
Subtracting `(1)` from `(2)`, we get
`2isinmtheta=2i['^(m)C_(1)cos^(m-1)thetasintheta-^(m)C_(3)cos^(m-3)thetasin^(3)theta.....]`.....`(iv)`
Adding `(3)` and `(4)`, we get
`cosmtheta+sinmtheta`
`=['^(m)C_0)cos^(m)theta+^(m)C_(1)cos^(m-1)thetasintheta-^(m)C_(2)cos^(m-2)thetasin^(2)theta-^(m)C_(3)cos^(m-3)thetasin^(3)theta....]`
`impliessqrt(2)sin(mtheta+(pi)/(4))`
`=['^(m)C_(0)cos^(m)theta+^(m)C_(1)cos^(m-1)thetasintheta-^(m)C_(2)cos^(m-2)thetasin^(2)theta-^(m)C_(3)cos^(m-3)thetasin^(3)theta...]`
Putting `theta=(pi)/(4)`, we get
`sqrt(2)sin"(((m+1)pi)/(4))`
`=(1)/(2^(m//2))`
`[('^(m)C_(0)+^(m)C_(1)-^(m)C_(2)-^(m)C_(3))+('^(m)C_(4)+^(m)C_(5)-^(m)C_(6)-^(m)C_(7))+...+('^(m)C_(m-3)+^(m)C_(m-2)-^(m)C_(m-1)-^(m)C_(m))]`
Hence , `m+1=4k`, for given quantity to be `0`.
`implies m=4k-1`, where `k in N`
Promotional Banner

Similar Questions

Explore conceptually related problems

Value of sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

If m=.^(n)C_(2) show that , .^(m)C_(2)=3.^(n+1)C_(4)

Let m in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) . (a) Statement-1 and Statement-2 both are correct and Statement-2 is the correct explanation for the Statement-1. (b) Statement-1 and Statement-2 both are correct and Statement-2 is not the correct explanation for the Statement-1. (c) Statement-1 is correct but Statement-2 is wrong. (d) Statement-2 is correct but Statement-1 is wrong.

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

The value of the determinant |{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+2)C_(1)),(.^(m)C_(2),,.^(m+1)C_(2),,.^(m+2)C_(2)):}| is equal to

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to

If a , b , c are consecutive positive integers and log(1+a c)=2K , then the value of K is

If m(x-2)+sqrt(1-m^2) y= 3 , is tangent to a circle for all m in [-1, 1] then the radius of the circle is (a) 1.5 (b) 2 (c) 4.5 (d) 3