Home
Class 12
MATHS
The sum S(n)=sum(k=0)^(n)(-1)^(k)*^(3n)C...

The sum `S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k)`, where `n=1,2,….` is

A

`(-1)^(n)*"^(3n-1)C_(n-1)`

B

`(-1)^(n)*"^(3n-1)C_(n)`

C

`(-1)n*"^(3n-1)C_(n+1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `S_(n)=^(3n)C_(0)-^(3n)C_(1)+^(3n)C_(2)+….+(-1)^(n)*^(3n)C_(n)`
But `.^(3n)C_(0)=.^(3n-1)C_(0)`
`-^(3n)C_(1)=-^(3n-1)C_(0)-^(3n-1)C_(1)`
`-^(3n)C_(2)=^(3n-1)C_(1)+^(3n-1)C_(2)`
`-^(3n)C_(3)=-^(3n-1)C_(2)-^(3n-1)C_(3)`
`…………....................................`
`(-1)^(n)*^(3n)C_(n)=(-1)^(n)*^(3n-1)C_(n-1)+(-1)^(n)*^(3n-1)C_(n)`
On adding we get `S_(n)=(-1)^(n)*^(3n-1)C_(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

(n)p_(r)=k^(n)C_(n-r),k=

sum_(k=1)^ook(1-1/n)^(k-1) =?

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

The value of sum_(r=1)^(n+1)(sum_(k=1)^n ^kC_(r-1)) (where r, k, n in N ) is equal to

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Prove that sum_(r=1)^(k) (-3)^(r-1) (3n)^C_(2r-1) = 0 , where k = 3n//2 and n is an even integer.

If a_(1),a_(2),a_(3),… are in G.P. , where a_(i) in C (where C satands for set of complex numbers) having r as common ratio such that sum_(k=1)^(n)a_(2k-1)=sum_(k=1)^(n)a_(2k+3) ne 0 , then the number of possible values of r is