Home
Class 12
MATHS
If for n in I , n > 10 ;1+(1+x)+(1+x)...

If for `n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum_(k=0)^n a_k*x^k , x!=0` then

A

`a_(n-2)=(n(n+1))/(2)`

B

`a_(9)^(2)-a_(8)^(2)=^(n+2)C_(10)('^(n+1)C_(10)-"^(n+1)C_(9))`

C

`a_(p) gt a_(p-1)` for `p lt (n)/(2)`

D

`sum_(k=0)^(n)a_(k)=2^(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` Coefficient of `x^(k)=a_(k)=^(n+1)C_(k+1)`
`a_(n-2)=^(n+1)C_(n-1)=(n(n+1))/(2)`
`a_(9)^(2)-a_(8)^(2)=^(n+2)C_(10)("^(n+1)C_(10)-^(n+1)C_(9))`
`a_(p) gt a_(p-1) implies p lt (n)/(2)`
`sum_(k=0)^(n)a_(k)=^(n+1)C_(1)+^(n+1)C_(2)+...+^(n+1)C_(n+1)=2^(n+1)-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)(1+x^2)(1+x^4)....(1+x^128)=sum_(r=0)^nx^r then n is

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (1-x^2)^n=sum_(r=0)^na_rx^r(1-x)^(2n-r) , then a_r is equal to

sum_(k=1)^ook(1-1/n)^(k-1) =?

If D_k=|[1, n, n];[ 2k, n^2+n+1, n^2+n];[ 2k-1, n^2, n^2+n+1]|a n dsum_(k=1)^n D_k=56. then n equals (a) 4 (b) 6 (c) 8 (d) none of these

Let (1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^k . If a_1 , a_2 and a_3 are in arithmetic progression, then the possible value/values of n is/are a. 5 b. 4 c. 3 d. 2

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Find the coefficient of x^k in1+(1+x)+(1+x)^2++(1+x)^n(0lt=klt=n)dot

If p(x)=a_(n)x^(n)+a_(n-1)x^(n-1)+.............+a_(1)x+a_(0) , where n is a whole number and a_(0)=a_(1)=a_(2)= ………….. =a_(n-1)=0nea_(n) , then p(1) =

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)