Home
Class 12
MATHS
Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 ...

Let `f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2` then the value of f(5) equals

A

`1000`

B

`1250`

C

`1750`

D

`2500`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `k^(n)C_(k)=n^(n-1)C_(k-1)`
`:.sum_(k=1)^(n)k^(2)("^(n)C_(k))^(2)`
`=n^(2)sum_(k=1)^(n)("^(n-1)C_(k-1))^(2)`
`=n^(2)("^(2n-2)C_(n-1))`
`:. F(5)=25("^(8)C_(4))=1750`
Promotional Banner

Similar Questions

Explore conceptually related problems

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

The value of sum_(i-1)^nsum_(j=1)^isum_(k=1)^j1=286 , then the value of n equals

If alpha=e^(i2pi//7)a n df(x)=a_0+sum_(k=0)^(20)a_k x^k , then prove that the value of f(x)+f(alpha x)+....+f(alpha^6x) is independent of alphadot

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is (a) "^(n)C_(k)*3^(k) (b) "^(n+1)C_(k)*3^(k) (c) "^(n+1)C_(k)*3^(k-1) (d) "^(n)C_(k-1)*3^(k)

sum_(k=1)^ook(1-1/n)^(k-1) =?

If S_(n)=underset(k=1)overset(4n)sum(-1)^((k(k+1))/(2)).k^(2) then the possible values of s_(n) are-

The function f(x)=sum_(k=1)^5 (x-K)^2 assumes then minimum value of x given by (a) 5 (b) 5/2 (c) 3 (d) 2

Let f(n)=sum_(r=0)^nsum_(k=r)^n(kC r) Find the total number of divisors of f(9)dot

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Find the natural number a for which sum_(k=1) ^(n)f(a+k)= 16(2^(n)-1) where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2 .