Home
Class 12
MATHS
The value of sum(r=1)^(n)(-1)^(r-1)((r )...

The value of `sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r )` is (a) `1/(n+1)` (b) `1/n` (c) `1/(n-1)` (d) 0

A

`(1)/(n+1)`

B

`(1)/(n)`

C

`(1)/(n-1)`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `(r )/(r+1)^(n)C_(r )=(1-(1)/(r+1))^(n)C_(r )`
`=^(n)C_(r )-(1)/(r+1)*(n!)/(r!(n-r)!)`
`=^(n)C_(r )-(1)/(n+1)'^(n+1)C_(r+1)`
`:.sum_(r=1)^(n)(-1)^(r-1)(r )/(r+1)*^(n)C_(r )`
`=^(n)C_(1)-^(n)C_(2)+C_(3)-.....-(1)/(n+1)['^(n+1)C_(2)-^(n+1)C_(3)+^(n+1)C_(4)-.....]`
`=^(n)C_(0)-(1)/(n+1)[-^(n+1)C_(0)+^(n+1)C_(1)]`
`=1-(1)/(n+1)[-1+(n+1)]`
`=(1)/(n+1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^n (^nP_r)/(r!) is

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

Find the value of sum_(r=1)^(n) (r)/(1+r^(2)+r^(4))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

msum_(r=1)^n1/nsqrt((n+r)/(n-r))

The result of ^(n-1)C_r+^(n-1)C_(r-1)=

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .