Home
Class 12
MATHS
Let S(1)=underset(0 le i lt j le 100)(su...

Let `S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j)`, `S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j)` and `S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j)` where `C_(r )` represents cofficient of `x^(r )` in the binomial expansion of `(1+x)^(100)`
If `S_(1)+S_(2)+S_(3)=a^(b)` where `a`, `b in N`, then the least value of `(a+b)` is

A

`66`

B

`72`

C

`46`

D

`52`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` We have `S_(1)+S_(2)+S_(3)=sum_(i=0)^(100)sum_(j=0)^(100)C_(i)C_(j)`
`=('^(100)C_(0)+^(100)C_(1)+^(100)C_(2)+...+^(100)C_(100))^(2)`
`=(2^(100))^(2)=2^(200)`
Now `S_(1)+S_(2)+S_(3)=2^(200)=4^(10)=16^(50)=32^(40)=256^(25)=…=a^(b)`
Hence least value of `(a+b)=16+50=66`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

If A_(i,j) be the coefficient of a^i b^j c^(2010-i-j) in the expansion of (a+b+c)^2010 , then (a) A_(i,i) is defined for i ge 1010 (b) A_(i,j)=A_(j,i) (c) A_(2i,3i) is defined for i ge 405 (d) A_(0,1)=2000

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

Let S_(1) = sum_(j=1)^(10) j(j-1).""^(10)C_(j), S_(2) = sum_(j=1)^(10)j.""^(10)C_(j) , and S_(3) = sum_(j=1)^(10) j^(2).""^(10)C_(j) . Statement 1 : S_(3) = 55 xx 2^(9) . Statement 2 : S_(1) = 90 xx 2^(8) and S_(2) = 10 xx 2^(8) .

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .