Home
Class 12
MATHS
If "^(n)C(0)-^(n)C(1)+^(n)C(2)-^(n)C(3)+...

If `"^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28` , then `n` is equal to ……

A

`7`

B

`8`

C

`9`

D

`11`

Text Solution

Verified by Experts

The correct Answer is:
C

`(c )` `'^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+....+(-1)^(r )*^(n)C_(r )`
`="coefficient of" x^(r ) "in the expansion of" (1-x)^(n)(1+x+x^(2)+….)`
`="coefficient of" x^(r ) "in the expansion of" (1-x)^(n)(1-x)^(-1)`
`="coefficient of" x^(r ) "in the expansion of" (1-x)^(n-1)`
`=(-1)^(r )*^(n-1)C_(r )`
`implies(-1)^(r )*^(n-1)C_(r )=28impliesr` must be even
`'^(n-1)C_(r )=28implies^(n-1)C_(r )=7xx4=(7xx8)/(2)=^(8)C_(2)=n-1=8impliesn=9`
Promotional Banner

Similar Questions

Explore conceptually related problems

.^(n-1)C_(r)+^(n-1)C_(r-1)=

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=.^(n+2)C_(r)(2lerlen) .

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to

Prove that , .^(n)C_(r)+3.^(n)C_(r-1)+3.^(n)C_(r-2)+^(n)C_(r-3)=^(n+3)C_(r)

Let m in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) . (a) Statement-1 and Statement-2 both are correct and Statement-2 is the correct explanation for the Statement-1. (b) Statement-1 and Statement-2 both are correct and Statement-2 is not the correct explanation for the Statement-1. (c) Statement-1 is correct but Statement-2 is wrong. (d) Statement-2 is correct but Statement-1 is wrong.

If (n-r+1)^(n)C_(r-1)=mxx^(n)C_(r) then m=

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)