Home
Class 12
MATHS
The value of the expansion (sumsum)(0 le...

The value of the expansion `(sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=`

A

`"^(2n-1)C_(n)`

B

`"^(2n)C_(n)`

C

`"^(2n+1)C_(n)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` Let the required value be `S`
`sum_(j=0)^(n)sum_(i=0)^(n)(-1)^(i+j-1)'^(n)C_(i)*^(n)C_(j)=sum_(i=0)^(n)(-1)^(2i-1)('^(n)C_(i))^(2)+2S`
`:.0=-sum_(i=0)^(n)('^(n)C_(i))^(2)+2S`
`:.2S=^(2n)C_(n)`
`:.S=^(2n-1)C_(n-1)=^(2n-1)C_(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

If (1+x)^n=C_0+C_1x+C_2x^2+.......+C_n x^n , then show that the sum of the products of the coefficients taken two at a time, represented by sumsum_(0lt=iltjlt=n) ""^nc_i ""^n c_j is equal to 2^(2n-1)-((2n)!)/ (2(n !)^2)

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

Find the sum sum_(j=0)^n( ^(4n+1)C_j+^(4n+1)C_(2n-j)) .