Home
Class 12
MATHS
Value of sum(m=1)^(n)(sum(k=1)^(m)(sum(p...

Value of `sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=`

A

`3^(n)-2^(n)`

B

`4^(n)-3^(n)`

C

`3^(n)+2^(n)`

D

`4^(n)-1`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `sum_(m=1)^(n)'^(n)C_(m)(sum_(k=1)^(m)(sum_(p=k)^(m)(m!)/(p!(m-p)!)*(p!)/(k!(p-k)!)))`
`=sum_(m=1)^(n)'^(n)C_(m)(sum_(k=1)^(m)(sum_(p=k)^(m)'^(m-k)C_(p-k))(m!)/(k!(m-k)!))`
`=sum_(m=1)^(n)'^(n)C_(m)(sum_(k=1)^(m)2^(m-k)*^(m)C_(k))`
`=sum_(m=1)^(n)'^(n)C_(m)((1+2)^(m)-2^(m))=sum_(m=1)^(n)('^(n)C_(m)3^(m)-^(n)C_(m)2^(m))`
`=(1+3)^(n)-1-(1+2)^(n)+1=4^(n)-3^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cot(sum_(n=1)^(23)cot^-1(1+sum_(k=1)^n2k)) is

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(k=0)^(7)[(((7),(k)))/(((14),(k)))sum_(r=k)^(14)((r ),(k))((14),(r ))] , where ((n),(r )) denotes "^(n)C_(r ) is

("^(m)C_(0)+^(m)C_(1)-^(m)C_(2)-^(m)C_(3))+('^(m)C_(4)+^(m)C_(5)-^(m)C_(6)-^(m)C_(7))+..=0 if and only if for some positive integer k , m= (a) 4k (b) 4k+1 (c) 4k-1 (d) 4k+2

The value of cot {sum_(n=1)^(23)cot^(-1)""(1+sum_(k-1)^(n)2k)} is

(n)p_(r)=k^(n)C_(n-r),k=

Let m in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) . (a) Statement-1 and Statement-2 both are correct and Statement-2 is the correct explanation for the Statement-1. (b) Statement-1 and Statement-2 both are correct and Statement-2 is not the correct explanation for the Statement-1. (c) Statement-1 is correct but Statement-2 is wrong. (d) Statement-2 is correct but Statement-1 is wrong.

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .