Home
Class 12
MATHS
The value of sum(k=0)^(7)[(((7),(k)))/((...

The value of `sum_(k=0)^(7)[(((7),(k)))/(((14),(k)))sum_(r=k)^(14)((r ),(k))((14),(r ))]`, where `((n),(r ))` denotes `"^(n)C_(r )` is

A

`6^(7)`

B

greater than `7^(6)`

C

`8^(7)`

D

greater than `7^(8)`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` `sum_(k=0)^(7)(('^(7)C_(k))/('^(14)C_(k))sum_(r=k)^(14)'^(r )C_(k)*^(14)C_(r ))`
`=sum_(k=0)^(7)(('^(7)C_(k))/(14!)xxk!(14-k)!sum_(r=k)^(14)(r !)/(k!(r-k)!)*(14!)/(r!(14-r)!))`
`=sum_(k=0)^(7)('^(7)C_(k)sum_(r=k)^(14)'^(14-k)C_(r-k))`
`=sum_(k=0)^(7)'^(7)C_(k)*2^(14-k)=2^(14)sum_(k=0)^(7)'^(7)C_(k)((1)/(2))^(k)`
`=2^(14)*(1+(1)/(2))^(7)=6^(7) gt 7^(6)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Archives|16 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^n (^nP_r)/(r!) is

Find the value of sum_(r=1)^(n) (r)/(1+r^(2)+r^(4))

(n)p_(r)=k^(n)C_(n-r),k=

The value of sum_(r=0)^(3n-1)(-1)^r .^(6n)C_(2r+1)3^r is

Value of sum_(m=1)^(n)(sum_(k=1)^(m)(sum_(p=k)^(m)"^(n)C_(m)*^(m)C_(p)*^(p)C_(k)))=

The value of cot(sum_(n=1)^(23)cot^-1(1+sum_(k=1)^n2k)) is

The value of cot {sum_(n=1)^(23)cot^(-1)""(1+sum_(k-1)^(n)2k)} is

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then find n