Home
Class 12
MATHS
The value of the sum ""^(1000)C(50) + ""...

The value of the sum `""^(1000)C_(50) + ""^(999)C_(49) +""^(998)C_(48)+"…."""^(950)C_(0)` is

A

`"^(1001)C_(50)`

B

`"^(1002)C_(951)-^(1001)C_(51)`

C

`"^(1001)C_(951)`

D

`"^(1002)C_(51)-^(1001)C_(95)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`(a,b,c,d)` `'^(1000)C_(50)+^(999)C_(40)+^(998)C_(48)+....+^(950)C_(0)`
`="coefficient of" x^(950) "in" {(1+x)^(950)+(1+x)^(951)+…+(1+x)^(1000)}`
`="coefficient of" x^(950) "in" (1+x)^(950){1+(1+x)+(1+x)^(2)+….+(1+x)^(50)}`
`="coefficient of" x^(950) "in" (1+x)^(950) ({(1+x)^(51)-1})/(1+x-1)`
`="coefficient of" x^(950) "in" ((1+x)^(1001)-(1+x)^(950))/(x)`
`=^(1000)C_(951)=^(1001)C_(50)=^(1002)C_(951)-^(1001)C_(51)=^(1002)C_(51)-^(1001)C_(950)`, Since `'^(n)C_(r )+^(n)C_(r-1)=^((n+1))C_(r )`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Archives|16 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE PUBLICATION|Exercise For problems 3 and 4|2 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The value of (""^(20) C_(4) +2* ""^(20)C_(3)+""^(20)C_(2) -""^(22)C_(18)) is-

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is (a) 40.^(69)C_(29) (b) 40.^(70)C_(30) (c) .^(60)C_(29) (d) .^(70)C_(30)

The value of (""^(n) C_(1)+2. ""^(n) C_(2)+3. ""^(n)C_(3)+…+ n""^(n)C_(n)) is-

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

Find the value of .^(20)C_(0) - .^(20)C_(1)+ .^(20)C_(2) - .^(20)C_(3) +"……"-"....." + .^(20)C_(10) . is

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

The value of "^(12)C_(2)+^(13)C_(3)+^(14)C_(4)+...+^(999)C_(989) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .