Home
Class 12
MATHS
Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] a...

Let `A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}]` and `B=[{:(x),(y),(1):}]`. If `AB` is a scalar multiple of `B`, then the value of `x+y` is

A

`-1`

B

`-2`

C

`1`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `AB=lambdaB`, where `lambda` is non-zero scalar.
`[{:(-5x-8y-7),(3x+5y+4),(2x+3y+3):}]=lambda[{:(x),(y),(2):}]`
i.e., `{:(-5x-8y-7=lambdax),(3x+5y+4=lambday),(2x+3y+3=2lambda):}`
Adding `0=lambda(x+y+2)`
`lambda ne 0impliesx+y+2=0`
`x+y=-2`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A(6, -1), B(1, 3) and C(x, 8) be three points such that AB = BC then the value of x are :

Let A=[(2,-1),(3,4)], B=[(5,2),(7,4)], C=[(2,5),(3,8)] . Find a matrix D such that CD-AB=O .

If x:y = 5:6 then the value of (3x + 4y)/(4x + 3y) will be

Let A= {:[( 3,7),( 2,5) ]:} and B = {:[( 6,8),( 7,9) ]:} .Verify that (AB) ^(-1) =B^(-1) A^(-1)

If A={:((1,-3,4,2),(0,5,-2,3))and B=((-5,0,6,4),(7,8,-2,5)), find a matrix X of order 2xx4 such that 3A-2X=B.

If A = [(-3,-4),(4,5)] and B = [(2,-3),(5,-8)] , verify that (AB)^(-1) = B^(-1)A^(-1) .

Let A={1,2,3,5} and B={4,6,9} let R =R={(x,y):abs(x-y) is odd x in A,y in B} write R in the roster form

If the lines 4x+3y=1,y=x+5 and 5y+bx=3 are concurrent, then find the value of b.

If 4^x-2^(x+2)+5+||b-1|-3|=|siny|, x , y , b in R , then the possible value of b is_________

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If matrix A=[a(ij)](3xx3), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0...

    Text Solution

    |

  2. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  3. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(1):}]. If AB ...

    Text Solution

    |

  4. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  5. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  6. If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B, the...

    Text Solution

    |

  7. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  8. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  9. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  10. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  11. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  12. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  13. If A=[[cos theta , sin theta],[sin theta,-costheta]], B = [[1,0],[-1,1...

    Text Solution

    |

  14. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  15. Let A and B be two non-singular matrices such that A ne I, B^(3) = I...

    Text Solution

    |

  16. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  17. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  18. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  19. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  20. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then which is true (a) A^(3)-A^(2...

    Text Solution

    |