Home
Class 12
MATHS
Let A be a 2xx3 matrix, whereas B be a 3...

Let `A` be a `2xx3` matrix, whereas `B` be a `3xx2` amtrix. If `det.(AB)=4`, then the value of `det.(BA)` is

A

`-4`

B

`2`

C

`-2`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D

`(d)` Let `A=[{:(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)):}]`, `B=[{:(b_(1),b_(2)),(b_(3),b_(4)),(b_(5),b_(6)):}]`
So, det `(BA)=|{:(b_(1)a_(1)+b_(2)a_(4),,b_(1)a_(2)+b_(2)a_(5),,b_(1)a_(3)+b_(2)a_(6)),(b_(3)a_(1)+b_(4)a_(4),,b_(3)a_(2)+b_(4)a_(5),,b_(3)a_(3)+b_(4)a_(6)),(b_(3)a_(1)+b_(6)a_(4),,b_(5)a_(2)+b_(6)a_(5),,b_(5)a_(3)+b_(6)a_(6)):}|`
`=|{:(a_(1),,a_(2),,a_(3)),(a_(4),,a_(5),,a_(6)),(0,,0,,0):}|xx|{:(b_(1),,b_(2),,0),(b_(3),,b_(4),,0),(b_(5),,b_(6),,0):}|=0` (column by row)
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A is a 3 times 3 matrix and B is its adjoint matrix. If abs(B)=64 , then abs(A)=

Let’s find the value of (2 xx 4)

Let's find the value of (4 xx 2)

Let A be a matrix of order 3, such that A^(T)A=I . Then find the value of det. (A^(2)-I) .

If A is a 2xx2 invertible matrix, then value of det A^(-1) is

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  2. Let A and B be two non-singular matrices such that A ne I, B^(3) = I...

    Text Solution

    |

  3. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |

  4. Let A be a square matrix of order 3 so that sum of elements of each ro...

    Text Solution

    |

  5. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  6. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  7. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then which is true (a) A^(3)-A^(2...

    Text Solution

    |

  8. If the elements of a matrix A are real positive and distinct such that...

    Text Solution

    |

  9. If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] and X is a non zero column matr...

    Text Solution

    |

  10. If A, B are two square matrices of same order such that A+B=AB and I i...

    Text Solution

    |

  11. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  12. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  13. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  14. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  15. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  16. If S is a real skew-symmetric matrix and det. (I-S) ne 0, then prove t...

    Text Solution

    |

  17. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then

    Text Solution

    |

  18. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  19. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  20. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |