Home
Class 12
MATHS
If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then...

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, then which is true (a) `A^(3)-A^(2)=A-I` (b) det. `(A^(100)-I)=0` (c) `A^(200)=[(1,0,0),(100,1,0),(100,0,1)]` (d) `A^(100)=[(1,1,0),(50,1,0),(50,0,1)]`

A

`A^(3)-A^(2)=A-I`

B

`Det(A^(2010)-I)=0`

C

`A^(50)=[{:(1,0,0),(25,1,0),(25,0,1):}]`

D

`A^(50)=[{:(1,1,0),(25,1,0),(25,0,1):}]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`(a,b,c)` `A^(2)=[{:(1,0,0),(1,0,1),(0,1,0):}][{:(1,0,0),(1,0,1),(0,1,0):}]=[{:(1,0,0),(1,1,0),(1,0,1):}]`
`A^(3)=[{:(1,0,0),(1,1,0),(1,0,1):}][{:(1,0,0),(1,1,0),(1,0,1):}]=[{:(1,0,0),(2,0,1),(1,1,0):}]`
`A^(3)-A^(2)=[{:(0,0,0),(1,-1,1),(0,1,-1):}]`and `A-I=[{:(0,0,0),(1,-1,1),(0,1,-1):}]`
`impliesA^(3)-A^(2)=A-I` and det `(A-I)=0`
`impliesDet|A^(n)-I)=Det((A-I)(1+A+A^(2)+...+A^(n-1)))`
`=Det(A-I)Det(1+A+A^(2)+....+A^(n-1))=0`
`A^(3)-A^(2)=A-I` ...........`(i)`
`impliesA^(4)-A^(3)=A^(2)-A`..........`(ii)`
`impliesA^(5)-A^(4)=A^(3)-A^(2)=A-I` (Using `(1)`)
If `n` is even `A^(n)-A^(n-1)=A^(2)-A`...........`(iii)`
If `n` is odd `A^(n)-A^(n-1)=A-I`..........`(iv)`
Consider `n` is even
`:.A^(n)-A^(n-1)=A^(2)-A`(Using `(iii)`)
`A^(n-1)-A^(n-2)=A-I` (Using `(iv)`)
On adding, we get
`A^(n)-A^(n-2)=A^(2)-I`
`impliesA^(n)-A^(n-2)+A^(2)-I`
`=A^(n-4)+A^(2)-I)+A^(2)-I`
`=(A^(n-6)+A^(2)-I)+2(^(2)-I)`
`=(A^(2))+(n-2)/(2)(A^(2)-I)`
`A^(n)=((n)/(2))A^(2)-((n-2)/(2))I`
`:.A^(50)=25A^(2)-24I`
`=25[{:(1,0,0),(1,1,0),(1,0,1):}]-24[{:(1,0,0),(0,1,0),(0,0,1):}]`
`=[{:(1,0,0),(25,1,0),(25,0,1):}]`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,0),(0,1,0),(0,0,1)] then A^2+2A=

If A = [{:(1,0,1),(0,1,2),(0,0,4):}] , then show that |3A|=27|A|.

If A=[(0,1),(1,0)] ,then A^4=

If A={:[(1,0),(-1,7)] and I={:[(1,0),(0,1)] , then find k so that A^(2)=8A+kI

If A={:[(2,0,1),(1,0,-1),(0,-1,1)]:}, find the matrix for the polynomial A^(2)-4A+3I.

If A={:[(0,-1),(1,0)]:} and B={:[(0,i),(i,0)]:} , then

If B [(1,-1,1),(2,-1,0),(1,0,0)] ,does B^(-1) exist?

If A = [(1,-1,1),(2,-1,0),(1,0,0)] find A^(2) and show that A^(2) = A^(-1) .

If [(0, 1), (-1,0)]^n = [(1,0),(0, 1)] then the value of n is

CENGAGE PUBLICATION-MATRICES-All Questions
  1. A and B be 3xx3 matrices such that AB+A+B=0, then

    Text Solution

    |

  2. If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , then |B|= (where A and B are m...

    Text Solution

    |

  3. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then which is true (a) A^(3)-A^(2...

    Text Solution

    |

  4. If the elements of a matrix A are real positive and distinct such that...

    Text Solution

    |

  5. If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] and X is a non zero column matr...

    Text Solution

    |

  6. If A, B are two square matrices of same order such that A+B=AB and I i...

    Text Solution

    |

  7. If A is a square matrix of order 3 such that |A|=5, then |Adj(4A)|=

    Text Solution

    |

  8. If A and B are two non singular matrices and both are symmetric and co...

    Text Solution

    |

  9. If A is a square matrix of order 3 such that |A|=2, then |(adjA^(-1))^...

    Text Solution

    |

  10. Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N. If |ad...

    Text Solution

    |

  11. A be a square matrix of order 2 with |A| ne 0 such that |A+|A|adj(A)|=...

    Text Solution

    |

  12. If S is a real skew-symmetric matrix and det. (I-S) ne 0, then prove t...

    Text Solution

    |

  13. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then

    Text Solution

    |

  14. If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A, then find ...

    Text Solution

    |

  15. Let A and B be two non-singular square matrices such that B ne I and A...

    Text Solution

    |

  16. If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h...

    Text Solution

    |

  17. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |

  18. If A is a non-singular matrix of order nxxn such that 3ABA^(-1)+A=2A^(...

    Text Solution

    |

  19. If the matrix A and B are of 3xx3 and (I-AB) is invertible, then which...

    Text Solution

    |

  20. Let a be square matrix such that A("adj. A")=[(4,0,0),(0,4,0),(0,0,4)]...

    Text Solution

    |