Home
Class 12
MATHS
Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)...

Prove that `sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={:{(-2 "," x lt -1 ),(2x ","-1 le x le1),(2 "," x gt1):}`

Text Solution

Verified by Experts

`sqrt(x^(2)+2x+1)-sqrt(x^(2)-2x+1)`
`=sqrt((x+1)^(2))-sqrt((x-1)^(2))`
`=|x+1|-|x-1|`
`= {(-x-1-(1-x)", "x lt -1),(x+1-(1-x)", "-1le x le1),(x+1-(x-1)", "x gt1):}`
`= {(-2", "x lt -1),(2x","-1le x le1),(2", "x gt1):}`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

Discuss the continuity of the function f, where f is defined by f(x)={{:(-2," if "x le -1),(2x," if "-1 lt x le 1),(2," if "x gt 1):} .

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

Prove that, 2 sin^(-1)x = sin^(-1) (2x sqrt (1-x^2))

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

underset(x to 0)"Lt" (sqrt(x^2+1)-1)/(sqrt(x^2+16)-4) =

If f(x)={(x,"when "0le x le 1),(2x-1,"when "x gt 1):} then -

Prove that tan^(-1)((1)/(sqrt(x^(2) -1))) = (pi)/(2) - sec^(-1) x, x gt 1

Discuss the continuity of the function f, where f is defined by f(x)={{:(2x," if "x lt 0),(0," if "0 le x le 1),(4x," if "x gt 1):} .

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))