Home
Class 12
MATHS
Find the possible values of sqrt(|x|-2) ...

Find the possible values of `sqrt(|x|-2)` (ii) `sqrt(3-|x-1|)` (iii) `sqrt(4-sqrt(x^2))`

Text Solution

Verified by Experts

(i) `sqrt(|x|-2) `
We know that square roots are defined for non-negative values only.
It implies that we must have ` |x|-2 ge 0`. Thus,
`sqrt(|x|-2) ge 0`
(ii) `sqrt(3-|x-1|)` is defined when `3-|x-1| ge 0`
But the maximum value of `3-|x-1|` is 3, when `|x-1|` is 0.
Hence, for `sqrt(3-|x-1|)` to get defined, ` 0 le 3-|x-1|le 3`.
Thus,
`sqrt(3-|x-1|) in [0, sqrt(3)]`
Alternatively, ` |x-1| ge 0`
`implies -|x-1| le 0`
`implies 3-|x-1| le 3`
But for `sqrt(3-|x-1|)` to get defined, we must have
`0 le 3 -|x-1| le3`
`implies 0 le sqrt(3-|x-1|) le sqrt(3)`
(iii) `sqrt(4-sqrt(x^(2)))=sqrt(4-|x|)`
`|x| ge 0`
`implies -|x| le 0`
`implies4-|x| le 4`
But for `sqrt(4-|x|)` to get defined `0 le 4 -|x| le 4`
` :. 0 le sqrt(4-|x|) le 2`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find all possible values of sqrt(|x|-2)

Find all the possible values of the expression sqrt(x^2-4) .

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Find all the possible the value of the following expression dot sqrt(x^2-4) (ii) sqrt(9-x^2) (iii) sqrt(x^2-2x+10)

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Find the value of int dx/((x -1)sqrt(x^2 + 4))

If x=sqrt3/2 then find the value of (sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))

If x = sqrt3/2 then find the value of (sqrt(1+x) - sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))

Evaluate: lim_(x->oo)((sqrt(x^2+1)- ^3sqrt(x^2+1)) / (4sqrt(x^4+1) -^5sqrt(x^4+1 )))

Find the value of x : (sqrt(3)+sqrt(2))^(x)+(sqrt(3)-sqrt(2))^(x)=10

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={:{(-2 "," x lt -1 ),(2x ","-...

    Text Solution

    |

  2. For x in R , find all possible values of (i)|x-4|-6

    Text Solution

    |

  3. Find the possible values of sqrt(|x|-2) (ii) sqrt(3-|x-1|) (iii) sqrt(...

    Text Solution

    |

  4. Solve |x-3|+|x-2|=1.

    Text Solution

    |

  5. Sol v e(|x+3|+x)/x >1

    Text Solution

    |

  6. Solve |3x-2| le (1)/(2).

    Text Solution

    |

  7. Solve ||x-1|-5|lt=2

    Text Solution

    |

  8. Solve: (-1)/(|x|-2) ge 1.

    Text Solution

    |

  9. Solve |x-1|+|x-2| ge 4

    Text Solution

    |

  10. Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi].

    Text Solution

    |

  11. Solve: |-2x^2+1+e^x+sinx|=|2x^2-1|+e^x+|sinx|,x in [0,2pi].

    Text Solution

    |

  12. Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a , b...

    Text Solution

    |

  13. If R={(x,y): x,y in W, x ^(2)+y^(2)=25}, then find the domain and rang...

    Text Solution

    |

  14. If R(1)={(x,y)|y=2x+7, where x in R and -5 le x le 5} is a relation. T...

    Text Solution

    |

  15. Show that the relation R in the set R of real numbers, defined as R={...

    Text Solution

    |

  16. Prove that the relation R in set A = {1, 2, 3, 4, 5} given by R = {(a...

    Text Solution

    |

  17. Show that the relation R in the set A of points in a plane given by R ...

    Text Solution

    |

  18. Show that the relation R defined in the set A of all triangles as R={(...

    Text Solution

    |

  19. Given a non empty set X, consider P (X) which is the set of all subset...

    Text Solution

    |

  20. Examine each of the following relations given below and state in each...

    Text Solution

    |