Home
Class 12
MATHS
Let the function f(x)=x^2+x+sin x-cosx+l...

Let the function `f(x)=x^2+x+sin x-cosx+log(1+|x|)` be defined on the interval `[-1,1]` .Define functions `g(x) and h(x) in[-1,0]` satisfying `g(-x)=-f(x) and h(-x)=f(x)AAx in [0,1]dot`

Text Solution

Verified by Experts

The correct Answer is:
`g(x)= -x^(2)+x+sinx +cosx -log(1+|x|)`
`h(x)=x^(2)-x-sinx-cosx+log(1+|x|)`

Clearly `g(x)` is the odd extension of the function `f(x)` and `h(x)` is the even extension.
Since `x^(2),cosx, log(1+|x|)` are even functions and `x, sin x` and odd functions.
`g(x)= -x^(2)+x+sinx +cosx-log(1+|x|)`
and `h(x)=x^(2)-x-sinx-cosx +log(1+|x|)`
Clearly this function satisfies the restriction of the problem.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The function f(x)= sin | log (x+ sqrt(x^(2) +1)) | is-

In the function f(x) is defined for x in[0,1] then the function f(2x+3) is defined for

The functions f(x) , g(x) and h(x) satiafy the relations, f'(x) = g (x+1) and g'(x)= h (x-1) then f''(2x)=?

Let f be a function defined on [0,2]. Then find the domain of function g(x)=f(9x^2-1)

If f is even function defined on the interval (-5, 5), then real values of x satisfying the equation f(x)=f((x+1)/(x+2)) are

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

If the function f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x) , then the value of g'(1) is

The function f(x) is defined in 0 le x le1, find the domain of definition of f(2x-1)

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

Let f be a twice differentiable function such that f"(x) = -f(x) , and f'(x) = g(x) , h(x)=[f(x)]^2+[g(x)]^2 Find h(10), if h(5) = 11

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. Identify the following functions: f(x)=cos["x"]+[(sinx)/2] where [dot...

    Text Solution

    |

  2. Identify the given functions whether odd or even or neither: f(x)={(x|...

    Text Solution

    |

  3. Let the function f(x)=x^2+x+sin x-cosx+log(1+|x|) be defined on the in...

    Text Solution

    |

  4. Which of the following function/functions is/are periodic? sgn(e^(-x))...

    Text Solution

    |

  5. Match the column

    Text Solution

    |

  6. Explain the term 'Mode'

    Text Solution

    |

  7. Find the fundamental period of f(x)=cosxcos2xcos3xdot

    Text Solution

    |

  8. Let f(x)={1+|x|,x<-1 [x],xgeq-1 , where [.] denotes the greatest integ...

    Text Solution

    |

  9. If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

    Text Solution

    |

  10. f(x) = (alpha x)/(x + 1) (x ne -1), then for what value of alpha , f{f...

    Text Solution

    |

  11. If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|...

    Text Solution

    |

  12. Let f be a function defined on [0,2]. The prove that the domain of fun...

    Text Solution

    |

  13. A function f has domain [-1,2] and range [0,1] . Find the domain and r...

    Text Solution

    |

  14. Let f(x)=tanx a n d g(f(x))=f(x-pi/4), where f(x)a n dg(x) are real ...

    Text Solution

    |

  15. Let g(x)=1+x-[x] and f(x)={-1,x < 0, 0, x=0 1, x > 0. Then for a...

    Text Solution

    |

  16. f(x)={(log(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):} and g(x)={(x+1","...

    Text Solution

    |

  17. The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given ...

    Text Solution

    |

  18. Find the inverse of the function: f: R rarr (-oo,1)gi v e nb y\ f(x)=1...

    Text Solution

    |

  19. f:(2,3)->(0,1) defined by f(x)=x-[x],where[dot] represents the great...

    Text Solution

    |

  20. Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], w...

    Text Solution

    |