Home
Class 12
MATHS
The period of the function f(x)= [6x+7]+...

The period of the function `f(x)= [6x+7]+cospix-6x ,` where `[dot]` denotes the greatest integer function is:

A

3

B

`2pi`

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x)=[6x+7]+cos pi x -6x`
`=[6x] +7+cos pi x -6x`
`=7+cos pi x -{6x}`
`{6x}` has period `1//6 and cos pi x` has period 2. Then, Period of `f(x) =LCM " of " 2 " and " 1//6 =2`
Hence, the period is 2.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x] (where [.] denotes the greatest integer function), then the value of 1/T is ___________

If T is the period of the function f(x)=[8x+7]+|tan2pix+cot2pix|-8x (where [.] denotes the greatest integer function), then the value of 1/T is ___________

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

The range of the function f(x)=sin^-1(log [x])+log(sin^-1[x]), (where [,] denotes the greatest integer function) is

If [x+[2x]] lt3 , where [.] denotes the greatest integer function, then x is

The function f(x) = [x]^2-[x^2] (where [.] denotes the greatest integer function ) is discontinuous at

The greatest integer function f(x)=[x] is -

Draw the graph of the function f(x) = x-|x^2-x| -1 le x le 1 , where [*] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

If [2sinx]+[cosx]=-3 then the range of the function f(x)=sinx+sqrt3cosx in [0, 2pi] is, (where [.] denotes the greatest integer function)

Identify the following functions: f(x)=cos["x"]+[(sinx)/2] where [dot] denotes the greatest integer function.

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. If f is periodic, g is polynomial function, f(g(x)) is periodic, g(2)=...

    Text Solution

    |

  2. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |

  3. The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denote...

    Text Solution

    |

  4. If f(x) and g(x) are periodic functions with periods 7 and 11, respect...

    Text Solution

    |

  5. The period of the function f(x)=c^((sin^2x+sin^(2(x+pi/3))+cosxcos(x+p...

    Text Solution

    |

  6. Let f(x)={(0.1).3^[[x]]}. (where [.] denotes greatest integer function...

    Text Solution

    |

  7. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  8. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  9. If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (wher...

    Text Solution

    |

  10. If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2, then (A) f(g(x))=x^2,x!=...

    Text Solution

    |

  11. If f(x)={(x^(2)",","for "x ge1),(x",","for "x lt 0):}, then fof(x) is...

    Text Solution

    |

  12. Let f(x)=sinx and g(x)=(log)e|x| If the ranges of the composition func...

    Text Solution

    |

  13. Let f(x)={2/(1+x^2),xi sr a t ion a l b ,xi sr a t ion a l has exactly...

    Text Solution

    |

  14. If f and g are one-one functions, then (a)f+g is one one (b)fg is one ...

    Text Solution

    |

  15. The domain of f(x) is (0,1) Then the domain of (f(e^x)+f(1n|x|) is (...

    Text Solution

    |

  16. Let h(x)=|k x+5|,t h edom a inoff(x)b e[-5,7], the domain of f(h(xx))b...

    Text Solution

    |

  17. If f(x)=sinx+cosx and g(x)=x^2-1, then g(f (x)) is invertible in the ...

    Text Solution

    |

  18. If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e...

    Text Solution

    |

  19. Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(...

    Text Solution

    |

  20. if f:[1,oo)->[2,oo) is given by f(x)=x+1/x then f^-1(x) equals to : a)...

    Text Solution

    |