Home
Class 12
MATHS
Let f(x)=sec^(-1)[1+cos^(2)x], where [.]...

Let `f(x)=sec^(-1)[1+cos^(2)x],` where [.] denotes the greatest integer function. Then find the domain and range

A

domain of `f` is R

B

domain of `f` is `[1,2]`

C

domain of `f` is `[1,2]`

D

range of `f " is " {sec^(-1) 1, sec^(-1)2}`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`f(x)=sec^(-1)[1+cos^(2)x]`
`f(x)` is defined if `[1+cos^(2)x] le -1 or [1+cos^(2)x] ge 1`
i.e., `[cos^(2)x] le -2("not possible") or [cos^(2)x] ge 0`
i.e., `cos^(2)x ge 0 or x in R`
Now, `0 le cos^(2)x le 1 or 1 le 1+ cos^(2)x le 2`
`or [1+cos^(2)x]=1,2`
`or sec^(-1)[1+cos^(2)x]=sec^(-1)1, sec^(-1)2`
Hence, the range is `{sec^(-1)1,sec^(-1)2}.`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Solve [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

Domain of f(x)=sin^-1[2-4x^2] is ([.] denotes the greatest integer function)

If f(x)=[x], where [.] denotes greatest integer function. Then check the continuity on [1,2]

Solve lim_(xrarr1)[sin^(-1)x] (where [.] denotes greatest integer function.)

Let f(x)={1+|x|,x<-1 [x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

Let f(x) = [x^3 - 3] where [.] denotes the greatest integer function Then the number of points in the interval ( 1, 2) where the function is discontinuous, is

Let f(x)=[sinx + cosx], 0ltxlt2pi , (where [.] denotes the greatest integer function). Then the number of points of discontinuity of f(x) is :

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. Given that f(x)=5x^2−8x,g(x)=x^2−5x−24 . Find ( f/g)(x)

    Text Solution

    |

  2. If log(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

    Text Solution

    |

  3. Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer ...

    Text Solution

    |

  4. Let f : R rarr[-1,oo] and f(x)= ln([|sin 2 x|+|cos 2 x|]) (where[.] is...

    Text Solution

    |

  5. If f: R ->Nuu{0}, where f (area of triangle joining points P(5,0),Q(8,...

    Text Solution

    |

  6. The domain of the function f(x)=(log)e{(log)(|sinx|)(x^2-8x+23)-{3/((l...

    Text Solution

    |

  7. Let f(x)=sgn(cot^(-1)x)+tan((pi)/(2)[x]), where [x] is the greatest in...

    Text Solution

    |

  8. f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

    Text Solution

    |

  9. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  10. Let f(x)={x^2-4x+3,x<3x-4,xgeq3 a n dg(x)={x-3,x<4x^2+2x+2,xgeq4 the...

    Text Solution

    |

  11. Let f(x)=max{1+sinx,1,1-cosx}, xin[0,2pi] and g(x)=max{1,|x-1|} x in R...

    Text Solution

    |

  12. If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,...

    Text Solution

    |

  13. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  14. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  15. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  16. Which of the following function is/are periodic? A. f(x)={(1, "x is...

    Text Solution

    |

  17. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  18. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  19. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  20. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |