Home
Class 12
MATHS
Consider the real-valued function satisf...

Consider the real-valued function satisfying `2f(sinx)+f(cosx)=xdot` then the domain of `f(x)i sR` domain of `f(x)i s[-1,1]` range of `f(x)` is `[-(2pi)/3,pi/3]` range of `f(x)i sR`

A

domain of `f(x)` is R

B

domain of `f(x)" is " [-1,1]`

C

range of `f(x) " is " [-(2pi)/(3),(pi)/(3)]`

D

range of `f(x)` is R

Text Solution

Verified by Experts

The correct Answer is:
B, C

Given `2f(sinx)+f(cosx)+x " (1)" `
Replacing x by `(pi)/(2)-x,` we get
`2f(cosx)+f(sinx)=(pi)/(2)-x " (2)" `
Eliminating `f(cosx)` from (1) and (2), we get
`3f(sinx)=3x-(pi)/(2)`
` or f(sinx)=x-(pi)/(2)`
` or f(x) ="sin"^(-1)x-(pi)/(6)`
`f(x)` has the domain [-1, 1].
Also, `sin^(-1)x in[-(pi)/(2),(pi)/(2)] or sin^(-1)x - (pi)/(6) in [-(2pi)/(3),(pi)/(3)].`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a)domain of f(x)i sR (b)domain of f(x)i s[-1,1] (c)range of f(x) is [-(2pi)/3,pi/3] (d)range of f(x)i sR

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(2)dot

The domain of f(x)=1/(sqrt(|cosx|+cosx)) is

If f(x)= x^2/(1+x^2) then the range of f is

Find the range of the function f(x)=(1)/(2+sin3x)

Find the domain of the function f(x)=1/(1+2sinx)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s

The graph of a function fx) which is defined in [-1, 4] is shown in the adjacent figure. Identify the correct statement(s). (1) domain of f(|x|)-1) is [-5,5] (2) range of f(|x|+1) is [0,2] (3) range of f(-|x|) is [-1,0] (4) domain of f(|x|) is [-3,3]

The domain of the real valued function f(x)=3e^sqrt(x^2-1)log(x-1) is

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. Let f(x)=max{1+sinx,1,1-cosx}, xin[0,2pi] and g(x)=max{1,|x-1|} x in R...

    Text Solution

    |

  2. If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,...

    Text Solution

    |

  3. Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot the...

    Text Solution

    |

  4. If f: R^+vecR^+ is a polynomial function satisfying the functional equ...

    Text Solution

    |

  5. f(x)=x^2-2a x+a(a+1),f:[a ,oo)vec[a ,oo)dot If one of the solution of ...

    Text Solution

    |

  6. Which of the following function is/are periodic? A. f(x)={(1, "x is...

    Text Solution

    |

  7. Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n...

    Text Solution

    |

  8. lf the fundamental period of function f(x)=sinx + cos(sqrt(4-a^2))x is...

    Text Solution

    |

  9. f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer funct...

    Text Solution

    |

  10. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  11. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  12. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  13. If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA...

    Text Solution

    |

  14. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  15. Let f: R->R be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in R...

    Text Solution

    |

  16. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |