Home
Class 12
MATHS
The function 'g' defined by g(x)= sin(si...

The function 'g' defined by `g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1` (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

A

an even function

B

periodic function

C

odd function

D

Neither even nor odd

Text Solution

Verified by Experts

The correct Answer is:
A, B

`g(x) =sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1`
`=sqrt({x})+cos(cos^(-1)sqrt(1-{x}))-1`
`=sqrt({x})+sqrt(1-{x})-1`
If `x in I " then " g(x) =0`
If ` x notin I " then " {-x} =1-{x}`
`implies g(-x)=sqrt(1-{x})=sqrt({x})-1 =g(x) `
`implies g(-x)=g(x) `
`implies g(x) ` is even function.
Also `g(x)={(0",",x in I),(g(-x)",",x notinI):}`
Thus `g(x)` is perodic function
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate {sin(2tan^-1 (1/3))} + {cos(tan^-1(2sqrt2))} where {.} denotes the fractional part function

If f(x) = {x} + sin ax (where {.} denotes the fractional part function) is periodic then

Prove that the derivative of and odd function is an even function.

The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

underset(xrarr0)(lim)[(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

The range of the function f(x)=sin^-1(log [x])+log(sin^-1[x]), (where [,] denotes the greatest integer function) is

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. [2x]-2[x]=lambda where [.] represents greatest integer function and {....

    Text Solution

    |

  2. The set of all values of x satisfying {x}=x[xx] " where " [xx] repres...

    Text Solution

    |

  3. The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)s...

    Text Solution

    |

  4. If the function f satisfies the relation f(x+y)+f(x-y)=2f(x)xxf(y), AA...

    Text Solution

    |

  5. Let f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2))[f(x) is not identically zer...

    Text Solution

    |

  6. Let f: R->R be a function defined by f(x+1)=(f(x)-5)/(f(x)-3)AAx in R...

    Text Solution

    |

  7. Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. The figure illustrates the graph of the function y=f(x) defined in [-3...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |

  12. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |

  13. If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) =...

    Text Solution

    |

  14. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  15. Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x,...

    Text Solution

    |

  16. Consider the function f(x) satisfying the identity f(x) +f((x-1)/(x))...

    Text Solution

    |

  17. If (f(x))^2*f((1-x)/(1+x))=64 x AA in Df then

    Text Solution

    |

  18. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The domain of f...

    Text Solution

    |

  19. If (f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D(f), then The value of f...

    Text Solution

    |

  20. f(x)={(x-1, -1lexlt0),(x^2, 0ltxle1):} and g(x)=sin x. Then find h(x)=...

    Text Solution

    |