Home
Class 12
MATHS
Let g(x)=cos^2 x,f(x)=sqrtx and alpha,...

Let `g(x)=cos^2 x`,`f(x)=sqrtx` and `alpha`,`beta` (`alpha` < `beta`) be the roots of the quadratic equation `18x^2-9pix+pi^2-0`. Then the area (in sq. units) bounded by the curve `y=(gof)(x)` and the lines `x=alpha,a=beta and y=0` is

A

`(1)/(2)(sqrt(2)-1)`

B

`(1)/(2)(sqrt(3)-1)`

C

`(1)/(2)(sqrt(3)+1)`

D

`(1)/(2)(sqrt(3)-sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
B

`18x^(2)-9pix+pi^(2)=0`
`rArr" "(6x-pi)(3x-pi)=0`
`therefore" "alpha=(pi)/(6),beta=(pi)/(3)`
`y=g(f(x))=g(sqrt(x))=cos x`
Area bounded by curves `y=cos x, x=(pi)/(6),x=(pi)/(3) and y=0` is
`overset(pi//3)underset(pi//6)intcos x dx =[sin x]_(pi//6)^(pi//3)=sin""(pi)/(3)-sin""(pi)/(3)=(1)/(2)(sqrt(3)-1)`
Promotional Banner

Topper's Solved these Questions

  • AREA

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type|30 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|3 Videos
  • AREA

    CENGAGE PUBLICATION|Exercise Numerical Value Type|18 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE PUBLICATION|Exercise Subjective Type|2 Videos
  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise Comprehension|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=2x-sin x and g(x)=3sqrtx then __

Let f(x)=2x-sinx and g(x) = 3sqrtx . Then

Let f(x)=ax^3+bx^2+cx+1 has exterma at x=alpha,beta such that alpha beta (a)three equal real roots (b)one negative root if f(alpha) > 0 and f(beta) (c)one positive root if f(alpha) 0 (d) none of these

Let f (x)=x^2+b_1x+c_1 and g(x)=x^2+b_2x+c_2 . When f(x)=0 then the real roots of f(x) are alpha,beta and when g(x)=0 then the real roots of g(x) are alpha+h,beta+h . Minimum value of f(x) is -1/4 and when x= 7/2 then value of g(x) will be minimum. Minimum value of g(x) is-

Let f (x)=x^2+b_1x+c_1 and g(x)=x^2+b_2x+c_2 . When f(x)=0 then the real roots of f(x) are alpha,beta and when g(x)=0 then the real roots of g(x) are alpha+h,beta+h . Minimum value of f(x) is -1/4 and when x= 7/2 then value of g(x) will be minimum. Roots of g(x)=0 are-

Let f (x)=x^2+b_1x+c_1 and g(x)=x^2+b_2x+c_2 . When f(x)=0 then the real roots of f(x) are alpha,beta and when g(x)=0 then the real roots of g(x) are alpha+h,beta+h . Minimum value of f(x) is 1/4 and when x= 7/2 then value of g(x) will be minimum. Value of b_2 is-

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0 and delta=b^2-4a cdot If alpha+beta,alpha^2+beta^2alpha^3+beta^3 are in G.P. Then a. =0 b. !=0 c. b =0 d. c =0

Show that the value of sin^(2) (x + a) + sin^(2) (x + beta) - 2 cos (alpha - beta ) sin (x + alpha) sin (x + beta) is independent of x.

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta -alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

IF the roots of the equation 3x^2+8x+2=0 are alpha,beta then (1/alpha+1/beta) =