Home
Class 12
MATHS
The maximum value of y = sqrt((x-3)^(2...

The maximum value of
`y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2))` is

A

3

B

`sqrt(10)`

C

`2sqrt(5)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`y = f(x) = sqrt((x^(2)-2)^(2)+(x-3)^(2)) -sqrt(x^(2)+(x^(2)-1)^(2))`
Note that the first radical sign describes the distance between `P(x,x^(2))` and `A(3,2)` whereas the second radical sign describes the distance between `P(x,x^(2))` and `B(0,1)`. Now `PA -PB le AB` for possible positions of P. Hence `f(x)]_(max) =` distance between `AB = sqrt(9+1) = sqrt(10)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE PUBLICATION|Exercise All Questions|238 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the expression abs(sqrt((sin^2x+2a^2))-sqrt((2a^2-1-cos^2x)) where a and x are real number is

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______

Find the value of x : (sqrt(3)+sqrt(2))^(x)+(sqrt(3)-sqrt(2))^(x)=10

Solve : dy/dx+ y/((1-x^(2) )^(3/2) ) = (x+ sqrt( 1-x^(2)))/((1-x^(2))^(2))

The equation |sqrt(x^(2)+(y-1)^(2))-sqrt(x^(2) +(y+1)^(2))| = k will represent a hyperbola for-

If (sqrt(a + 2b) + sqrt(a - 2b))/(sqrt(a + 2b) - sqrt(a - 2b)) = sqrt3 and a^(2) + b^(2) = 1 , then the find values of a and b. (b) If sqrt((x - sqrt(a^(2) - b^(2)))^(2) + y^(2)) + sqrt((x + sqrt(a^(2) - b^(2)))^(2) + y^(2)) = 2a then prove that (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The expression (sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2x^2-1)))^6 is polynomial of degree

If x is real, then the maximum value of y=2(a-x)(x+sqrt(x^2+b^2))

Find the values of x and y when x^(2)+y^(2)-2sqrt(2)x+2sqrt(5)y=-7 .