Home
Class 12
MATHS
P(cosalpha,sinalpha), Q(cosbeta, sinbeta...

`P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma)` are vertices of triangle whose orthocenter is `(0, 0)` then the value of `cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha)` is

A

A. `-3//2`

B

B. `-1//2`

C

C. `1/2`

D

D. `3//2`

Text Solution

Verified by Experts

The correct Answer is:
A

Clearly `OP = OQ = OR`, where O is orthocentre
`:. O(0,0)` is the circum centre of `DeltaPQR`.
Also, given orthocenter `= (0,0)`
Thus, orthocentre and circumcentre coincide, So, triangle is equilateral
`:.` Centroid of `DeltaPQR = (0,0)`
`rArr cos alpha +cos beta +cos gamma =0`, and `sin alpha + sin beta+ sin gamma = 0` Squaring and adding we get
`cos(alpha-beta) +cos (beta-gamma) +cos (gamma- alpha) =-(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE PUBLICATION|Exercise All Questions|238 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

If sin alpha + sin beta + sin gamma =3, then the value of (cos alpha + cos beta+ cos gamma) is-

If alpha , beta , gamma are the roots of the equation px^3 - qx + r = 0 , then the value of alpha + beta + gamma is

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .

If alpha, beta , gamma are angles of a triangle then the value of (sin^(2) alpha + sin ^(2) beta+sin ^(2) gamma-2 cos alpha cos beta cos gamma) is-

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

If alpha,beta,gaama are the roots of the cubic x^3+qx+r=0 , find the equation whose roots are (alpha-beta)^2,(beta-gamma)^2,(gamma-alpha)^2 .

If alpha+beta=90^(@) , then find the value of cotbeta+cosbeta-(cosbeta)/(cosalpha)(1+sinbeta)

If the points O (0,0), A(cos alpha, sin alpha), B(cos beta, sin beta) are the vertices of a right-angled triangle, then |sinfrac((alpha-beta))(2)| =

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is