Home
Class 12
MATHS
The line passing through (-1,pi/2) and p...

The line passing through `(-1,pi/2)` and perpendicular to `sqrt3 sin(theta) + 2 cos (theta) = 4/r` is

A

`2 = sqrt(3)r cos theta - 2r sin theta`

B

`5 =- 2sqrt(3)r sin theta +4r cos theta`

C

`2 = sqrt(3)r cos theta +2r cos theta`

D

`5 = 2 sqrt(3)r sin theta +4r cos theta`

Text Solution

Verified by Experts

The correct Answer is:
A

Perpendicular to `sqrt(3) sin theta +2 cos theta = (4)/(r)` is
`sqrt(3) sin ((pi)/(2) +theta) +2 cos ((pi)/(2)+theta) = (k)/(r )`
It is passing through `(-1,pi//2)`
`:. sqrt(3) sin pi +2 cos pi =(k)/(-1) rArr k = 2`
`:. sqrt(3) cos theta - 2 sin theta = (2)/(r) rArr 2 = sqrt(3)r cos theta - 2r sin theta = 2`.
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE PUBLICATION|Exercise All Questions|238 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

The equation to the straight line passing through the point (a "cos"^(3) theta, a "sin"^(3) theta) and perpendicular to the line x "sec" theta + y"cosec" theta = a is

If tan(theta+15^@)= sqrt3 then sin theta+ cos theta =?

Solve 3 cos^2 theta - 2 sqrt3 sin theta cos theta - 3 sin^2 theta = 0

(i) If sin(pi/2costheta) = cos(pi/2 sin theta) , show that, +- cos(theta + pi/4) =(4n+1)/sqrt(2) where n= any integer. (ii) If tan(pi cos theta) = cot(pi sin theta) , prove that, cos(theta - pi/4) = (2n+1)/(2sqrt(2)), n=0, -1,1,-2,2 ,............

Express (cos theta - sin theta)" in the form " r cos (theta+ alpha) and (sqrt 3sin theta + cos theta) " in the form r" sin(theta + beta).

If tan theta = 3/4 show that sqrt((1-sin theta)/(1+sin theta)) = 1/2 .

If A(3/sqrt(2), sqrt(2)) , B(-3/sqrt(2), sqrt(2)), C(-3/sqrt(2), -sqrt(2)) and D(3 cos theta , 2 sin theta) are four points . If the area of the quadrilateral ABCD is maximum where theta in (3 pi/2, 2 pi) then (a) maximum area is 10 sq units (b) theta = 7 pi/4 (c) theta = 2 pi- sin^(-1) 3/ sqrt(85) (d) maximum area is 12 sq units

If cos theta + sin theta = sqrt2 cos theta , then cos theta - sin theta is___

If 0 < theta < pi , then the value of sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta)) will be-

The number of real values of theta lying in the interval (-pi/2, pi/2) and satisfying the equation (sqrt3)^(sec^2theta)=tan^4theta+2tan^2theta is