Home
Class 12
MATHS
Under rotation of axes through theta , x...

Under rotation of axes through `theta` , `x cosalpha + ysinalpha=P` changes to `Xcos beta + Y sin beta=P` then . (a) `cos beta = cos (alpha - theta)` (b) `cos alpha= cos( beta - theta)` (c) `sin beta = sin (alpha - theta)` (d) `sin alpha = sin ( beta - theta)`

A

`cos beta = cos (alpha - theta)`

B

`cos alpha = cos (beta - theta)`

C

`sin beta = sin (alpha - theta)`

D

`sin alpha = sin (beta - theta)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`x cos alpha +y sin alpha +P`
Axis rotated through angle `theta`.
Transformed equation
`cos alpha (x cos theta - y sin theta) +sin alpha (x sin theta +y cos theta) = P`
`x cos (alpha -theta) +y sin (alpha -theta) = P rArr x cos beta +y sin beta = P` where,
`cos beta = cos (alpha-theta), sin beta = sin (alpha - theta)`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE PUBLICATION|Exercise All Questions|238 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise JEE Main|6 Videos

Similar Questions

Explore conceptually related problems

If sin alpha = sin beta and cos alpha = cos beta then-

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" (2(1-cos (alpha - beta)))/(cos beta - cos alpha)^(2)=

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" (sin alpha - cos alpha - sin beta + cos beta)/(sin alpha + cos alpha - sin beta - cos beta)=

sin alpha + sin beta = a "and" cos alpha + cos beta = b cos (alpha + beta) =

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =

|{:(cosalpha cos beta,cos alpha sin beta ,-sin alpha),(-sin beta,cos beta," "0),(sin alpha cosbeta ,sinalpha sin beta ,""cos alpha):}|

If tan theta = ( tan alpha - tan beta)/(1-tan alpha tan beta),"show that", sin 2 theta=(sin 2 alpha- sin 2 beta)/(1- sin2 alpha sin 2 beta).

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =0

If tan theta = ( tan alpha + tan beta)/(1 + tan alpha tan beta),"show that " sin 2 theta =(sin 2 alpha + sin 2 beta)/(1+sin 2 alpha sin 2 beta)