Home
Class 12
MATHS
The ellipse (x^(2))/(25)+(y^(2))/(16)=1 ...

The ellipse `(x^(2))/(25)+(y^(2))/(16)=1` and the hyperbola `(x^(2))/(25)-(y^(2))/(16) =1` have in common

A

A. centre and vertices only

B

B. centre, foci and vertices

C

C. centre, foci and directrices

D

D. centre only

Text Solution

Verified by Experts

The correct Answer is:
A

For ellipse `(x^(2))/(25) + (y^(2))/(16) =1, a = 5` and `b = 4`
For hyperbola `(x^(2))/(25) - (y^(2))/(16) =1, a = 5` and `b = 4`
For ellipse `a^(2)e^(2) = a^(2)-b^(2) = 25 - 16 =9`
For hyperbola `a^(2)e^(2) = a^(2)+b^(2) = 25 + 16 = 41`
`:.` center and vertices only are common.
Promotional Banner

Similar Questions

Explore conceptually related problems

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(25)=1 is

If foci of the ellipse (x^(2))/(16) + (y^(2))/(b^(2)) = 1 coincide with the foci of the hyperbola (x^(2)/(144) - (y^(2))/(81)) = (1)/(25) , then the value of b^(2) is -

Find the length of chord of the ellipse (x^(2))/(25)+(y^(2))/(16)=1 , whose middle point is ((1)/(2),(2)/(5)) .

Show that the eccentricities of the two hyperbolas (x^(2))/(16) - (y^(2))/(9) = 1 and (x^(2))/(64) - (y^(2))/(36) = 1 are equal.

The foci of the ellipse (x^(2))/(25) + (y^(2))/(9) = 1 coincide with the hyperbola. It e = 2 for hyperbola, find the equation of the hyperbola.

Tangents are drawn from any point on the circle x^(2)+y^(2) = 41 to the ellipse (x^(2))/(25)+(y^(2))/(16) =1 then the angle between the two tangents is

If the foci of (x^(2))/(16)+(y^(2))/(4)=1 and (x^(2))/(a^(2))-(y^(2))/(3)=1 coincide, the value of a is

The ellipse (x^(2))/(169) + (y^(2))/(25) = 1 has the same eccentricity as the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 . Find the ratio (a)/(b) .

Factorise : (x^(4))/(16)-(y^(4))/(25)