Home
Class 12
MATHS
If the foci of (x^(2))/(16)+(y^(2))/(4)=...

If the foci of `(x^(2))/(16)+(y^(2))/(4)=1` and `(x^(2))/(a^(2))-(y^(2))/(3)=1` coincide, the value of a is

A

3

B

2

C

`(1)/(sqrt(3))`

D

`sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

Foci of `(x^(2))/(16)+(y^(2))/(4) =1` are `(+- sqrt(12),0)`
Foci of `(x^(2))/(a^(2)) -(y^(2))/(3) =1` are `(+- sqrt(a^(2)+3), 0)`
Given `a^(2)+3 =12 rArr a^(2) = 9 rArr a = 3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the foci of the ellipse (x^2)/(16)+(y^2)/(b^2)=1 and the hyperbola (x^2)/(144)-(y^2)/(81)=1/(25) coincide, then find the value of b^2

The ellipse (x^(2))/(25)+(y^(2))/(16)=1 and the hyperbola (x^(2))/(25)-(y^(2))/(16) =1 have in common

If the foci of (x^2)/(a^2)-(y^2)/(b^2)=1 coincide with the foci of (x^2)/(25)+(y^2)/9=1 and the eccentricity of the hyperbola is 2, then

If (x+1, y-2)=(3,1), find the values of x and y.

If (x)/(2)+(y)/(3)=1 , find the minimum value of x^(2)+y^(2) .

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , then the value of -x^(3)y(dy)/(dx) is -

If foci of the ellipse (x^(2))/(16) + (y^(2))/(b^(2)) = 1 coincide with the foci of the hyperbola (x^(2)/(144) - (y^(2))/(81)) = (1)/(25) , then the value of b^(2) is -

If the solution of (x)/(x^(2)+y^(2))dy=((y)/(x^(2)+y^(2))-1)dx satisfies y(0)=1 then the value of (16)/(pi)y((pi)/(4)) is-

If (x+y,y-2) = (3,1), find the values of x and y.

The lines (x)/(1)=(y)/(2)=(z)/(3) and (x-1)/(-2)=(y-2)/(-4)=(3-z)/(6) are