Home
Class 12
MATHS
The point (3tan (theta +60^(@)),2 tan(th...

The point `(3tan (theta +60^(@)),2 tan(theta +30^(@)))` lies on the conic, then its centre is `(theta` is the parameter)

A

`(-3sqrt(3),2sqrt(3))`

B

`(3sqrt(3),-2sqrt(3))`

C

`(-3sqrt(3),-2sqrt(3))`

D

(0,0)

Text Solution

Verified by Experts

The correct Answer is:
A

Let `(3 tan (theta + 60^(@)),2 tan (theta + 30^(@)) -= (h,k)`
`:. tan (theta + 60^(@)) = (h)/(3)` (1)
and `tan (theta + 30^(@)) = (k)/(2)` (2)
`tan 30^(@) = tan [(theta + 60^(@))- (theta + 30^(@))]`
`rArr (1)/(sqrt(3)) = (tan (theta+60^(@))-tan(theta+30^(@)))/(1+tan (theta+60^(@))tan (theta+30^(@)))`
`rArr (1)/(sqrt(3)) =((x)/(3)-(y)/(2))/(1+(xy)/(6))`
`rArr xy - 2sqrt(3)x + 3sqrt(3)y + 6 =0`
`rArr (x+3sqrt(3)) (y-2sqrt(3)) + 24 =0`
`rArr` center is `(-3sqrt(2),2sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

3tan(theta - pi/12) = tan(theta + pi/12)

If m tan (theta -30^(@)) = n tan (theta +120^(@)), then the value of cos 2 theta is -

tan 3theta = tan 2theta + tantheta

tan3theta + tantheta = 2tan 2theta

If m tan (theta - 30^(@)) = n tan (theta + 120^(@)), "show that", 2 cos 2theta = (m+n)/(m-n).

Solve tan theta + tan 2theta + tan 3theta = 0

sec^(3)theta - 2tan^(2)theta =2

sin^(3)theta = tan2theta + tantheta

Find, theta =tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=