Home
Class 12
MATHS
In X-Y plane, the path defined by the eq...

In X-Y plane, the path defined by the equation `(1)/(x^(m))+(1)/(y^(m)) +(k)/((x+y)^(n)) =0`, is (a) a parabola if `m = (1)/(2), k =- 1, n =0` (b) a hyperbola if `m =1, k =- 1, n=0` (c) a pair of lines if `m = k = n =1` (d) a pair of lines if `m = k =- 1, n =1`

A

a parabola if `m = (1)/(2), k =- 1, n =0`

B

a hyperbola if `m =1, k =- 1, n=0`

C

a pair of lines if `m = k = n =1`

D

a pair of lines if `m = k =- 1, n =1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

(a) `sqrt(x) + sqrt(y) =1`
`rArr + y+2 sqrt(xy) =1`
`rArr 4xy = (1-x-y)^(2)`
(b) `(1)/(x) +(1)/(y) =1 rArr xy - x - y=0` is a hyperbola
(c ) `(1)/(x) +(1)/(y) + (1)/(x+y) =0`
`rArr x^(2) + 3xy + y^(2) =0`, which is a pair of lines.
(d) `x + y -(1)/(x+y) =0`
`rArr (x+y)^(2) =1`
`rArr x+y = +-1` which is a pair of lines.
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If k in R_o then det{adj(k I_n)} is equal to (A) K^(n-1) (B) K^((n-1)n) (C) K^n (D) k

Simplify : (1)/(1+x^(m-n)+x^(m-p))+(1)/(1+x^(n-p)+x^(n-m))+(1)/(1+x^(p-m)+x^(p-n)) .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

If m, n in R , then the value of I(m,n)=int_(0)^(1) t^(m)(1+t)^(n)dt is -

If m = sqrtfrac(n)(n+1/2) and m = 1/2, then n =

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

prove that, If m , n in N ,("lim")_(xto0)(sinx^n)/((sinx)^m)i s (a) 1, if n=m (b) 0, if n>m

If m, n and p are arbitrary integers, show that the equation x^(3m)+x^(3n+1)+x^(3p+2)=0 is satisfied by the roots of the equations x^(2)+x+1=0

If the line k^(2)(x-1)+k(y-2)+1=0 touches the parabola y^(2)-4x-4y+8=0 , then k can be