Home
Class 12
MATHS
If a chord joining P(a sec theta, a tan ...

If a chord joining `P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha)` on the hyperbola `x^(2)-y^(2) =a^(2)` is the normal at P, then `tan alpha ` is (a) `tan theta (4 sec^(2) theta+1)` (b) `tan theta (4 sec^(2) theta -1)` (c) `tan theta (2 sec^(2) theta -1)` (d) `tan theta (1-2 sec^(2) theta)`

A

`tan theta (4 sec^(2) theta+1)`

B

`tan theta (4 sec^(2) theta -1)`

C

`tan theta (2 sec^(2) theta -1)`

D

`tan theta (1-2 sec^(2) theta)`

Text Solution

Verified by Experts

The correct Answer is:
B

Slope of chord joining P and Q = slope of normal at P
`:. (tan alpha - tan theta)/(sec alpha - sec theta) =- (tan theta)/(sec theta)`
`:. tan alpha - tan alpha =- k tan theta` and `sec alpha - sec theta = k sec theta (1+k) sec theta = sec alpha` (1)
`:. (1-k) tan theta = tan alpha` (2)
`[(1+k)sec theta]^(2) - [(1-k)tan theta]^(2) = sec^(2) alpha - tan^(2) alpha =1`
`rArr k =- 2 (sec^(2) theta + tan^(2) theta) =- 4 sec^(2) theta +2`
From (2), `tan alpha = tan theta (1+4 sec^(2) theta -2) = tan theta (4 sec^(2) theta -1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (1)/(3) lt (sec^(2) theta - tan theta)/( sec^(2) theta+ tan theta) lt3 .

sec4theta - sec2theta=2

tan theta + sec theta = sqrt(3)

If sec^2 theta + tan^2 theta = 13/12 , then sec^4 theta =

If tan theta + sec theta =e^(x), then the value of cos theta is -

(1 + tan^(2) theta)/(1 - tan^(2) theta)=

The value of cosec ^(2) theta cot ^(2) theta - sec ^(2) theta tan ^(2) theta -(cot ^(2) theta- tan ^(2) theta) (sec ^(2) theta cosec ^(2) theta -1) is-

Solve: tan^(2) theta+ sec 2 theta=1