Home
Class 12
MATHS
If the normal at P(asectheta,btantheta) ...

If the normal at `P(asectheta,btantheta)` to the hyperbola `x^2/a^2-y^2/b^2=1` meets the transverse axis in G then minimum length of PG is

A

`(b^(2))/(a)`

B

`|(a)/(b)(a+b)|`

C

`|(a)/(b)(a-b)|`

D

`|(a)/(b)(a-b)|`

Text Solution

Verified by Experts

The correct Answer is:
A

Equation of the normal is `ax cos theta + by cot theta = a^(2) +b^(2)` The normal at P meets the coordinate axes at `G((a^(2)+b^(2))/(a)sec theta,0)`
and `g (0,(a^(2)+b^(2))/(b)tan theta)`
`:. PG^(2) = ((a^(2)+b^(2))/(a)sec theta -a sec theta)^(2)+(b tan theta -0)^(2)`
`PG^(2) =(b^(2))/(a^(2)) (b^(2) sec^(2) theta + a^(2) tan^(2) theta)`
When `tan theta =0`
`PG =(b^(2))/(a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the normal at P(theta) on the hyperbola (x^2)/(a^2)-(y^2)/(2a^2)=1 meets the transvers axis at G , then prove that A GdotA^(prime)G=a^2(e^4sec^2theta-1) , where Aa n dA ' are the vertices of the hyperbola.

If the normal at a point P to the hyperbola x^2/a^2 - y^2/b^2 =1 meets the x-axis at G , show that the SG = eSP.S being the focus of the hyperbola.

If the chord joining the points (asectheta, btantheta) and (asecphi, btanphi) on the hyperbola x^2/a^2-y^2/b^2=1 passes through the focus (ae,0), prove that tan(theta/2)tan(phi/2)+(e-1)/(e+1)=0 .

Normal is drawn at one of the extremities of the latus rectum of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 which meets the axes at points Aa n dB . Then find the area of triangle O A B(O being the origin).

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg . (a) a : b (b) a^2 : b^2 (c) b : a (d) b^2 : a^2

P is a point on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , and N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

Ifthe normal at P to the rectangular hyperbola x^2-y^2=4 meets the axes in G and g and C is the centre of the hyperbola, then

Let P(a sectheta, btantheta) and Q(asecphi , btanphi) (where theta+phi=pi/2 ) be two points on the hyperbola x^2/a^2-y^2/b^2=1 If (h, k) is the point of intersection of the normals at P and Q then k is equal to (A) (a^2+b^2)/a (B) -((a^2+b^2)/a) (C) (a^2+b^2)/b (D) -((a^2+b^2)/b)

The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( a sec theta , b tan theta) is -

The slope of the tangent to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( x_(1),y_(1)) is-