Home
Class 12
MATHS
If omega is one of the angles between ...

If `omega` is one of the angles between the normals to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` `(b>a)` at the point whose eccentric angles are `theta` and `pi/2+theta` , then prove that `(2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))`

Text Solution

Verified by Experts

The equations of the normals to the ellipse `(x^(2))/(a^(2))+(y^(2))/(gb^(2))=1` at the points whose eccentric angles are `theta and (pi)/(2)+thea` are, respectively.
`ax sec theta-"by cosec"theta=a^(2)-b^(2)`
and `ax "cosec" theta-"by" sec theta=a^(2)-b^(2)`
Sicnce `omega` is the angle between these two normals, we have `tan omega|((a)/(b) tan theta+(a)/(b)cot theta)/(1-(a^(2))/(b^(2)))|`
`=|(ab(tan theta+cot theta))/(b^(2)-a^(2))|`
`=|(2ab)/((sin2theta)(b^(2)-a^(2)))|`
`=(2ab)/((a^(2)-b^(2))sin 2 theta)=(2a^(2)sqrt(1-e^(2)))/(a^(2)e^(2) sin2 theta)`
`:. (2cot omega)/(sin 2 theta)=(e^(2))/(sqrt(1-e^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If e be the eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 , then e =

The slop of the tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 at the point (a cos theta, b sin theta) - is

The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( a sec theta , b tan theta) is -

Prove that (cos2theta)/(1+sin2theta)=tan(pi/4-theta) .

Prove that: (cos2theta)/(1+sin2theta)=tan(pi/4-theta)

Find the eccentric angles of the extremities of the latus recta of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then find the ecentricity angle theta of point of contact.

The slope of the normal to the circle x^(2)+y^(2)=a^(2) at the point (a cos theta, a sin theta) is-

If x=a sin theta and y=b tan theta , then prove that (a^(2))/(x^(2))-(b^(2))/(y^(2))=1 .

If sec theta+tan theta = x , prove that sin theta= (x^2-1)/(x^2+1)