Home
Class 12
MATHS
If the line 2px+ysqrt(5-6p^(2))=1, p in ...

If the line `2px+ysqrt(5-6p^(2))=1, p in [-sqrt(5)/(6),sqrt(5)/(6)]`, always touches the standard ellipse. Then find the eccentricity of the standard ellipse.

Text Solution

Verified by Experts

The correct Answer is:
`1//sqrt(3)`

Standard Ellipse : `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
Equations of tangent to ellipse having slope m is
`y=mx+-sqrt(a^(2)m^(2)+b^(2))" "(1)`
Given equation of tangent is `2px+ysqrt(5-6p^(2))=1`
Comparing, we get
`m=-(2p)/(sqrt(5-6p^(2)))a^(2)m^(2)+b^(2)=((1)/(sqrt(5-6p^(2))))^(2)`
`rArra^(2)(4p^(2))/((5-6p^(2)))+b^(2)=(1)/(5-6p^(2))`
`rArr4a^(2)p^(2)+b^(2)(5-6p^(2))-1=`
`rArrp^(2)(4a^(2)-6b^(2))+5b^(2)-=0`
Equation (1) should be true for all value of `p in [-sqrt((5)/(6)),sqrt((5)/(6))]`
`:. 4a^(2)=6b^(2)and 5b^(2)-1=0`
`rArra^(2)=(3)/(10) and b^(2)=(1)/(5)`
`rArre=sqrt(1-(10)/(5xx3))=sqrt((5)/(15))=(1)/(sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (5, 12) and (24, 7) are the foci of an ellipse passing through the origin, then find the eccentricity of the ellipse.

The eccentricity of the ellipse 5x^(2) + 9y^(2) = 1 is _

Find the square root of 5+2sqrt6

Solve sqrt(5-2 sin x)=6 sin x-1

The ratio of the area of triangle inscribed in ellipse x^2/a^2+y^2/b^2=1 to that of triangle formed by the corresponding points on the auxiliary circle is 0.5. Then, find the eccentricity of the ellipse. (A) 1/2 (B) sqrt3/2 (C) 1/sqrt2 (D) 1/sqrt3

If the normal at one end of lotus rectum of an ellipse passes through one end of minor axis then prove that, e^(2)=(sqrt(5)-1)/(2) , where e is the eccentricity of the ellipse.

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot