Home
Class 12
MATHS
If the straight line 4ax+3by=24 is a no...

If the straight line `4ax+3by=24` is a normal to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtb)`, then find the the coordinates of focii and the ellipse

Text Solution

Verified by Experts

The correct Answer is:
`(4+-sqrt(10),0)`

Given normal is `4ax+3by=34 " "(1)`
Let this line be normal to the ellipse at `P(a cos theta, b sin theta)` is `ax sec theta-"by cosec" theta= a^(2)-b^(2)" "(2)`
Equations (1) and (2) are identical, so `(sectheta)/(4)=(-"cosec"theta)/(3)=(a^(2)-b^(2))/(24)`
`:. cos theta=(6)/(a^(2)-b^(2))and sin theta=(-8)/(a^(2)-b^(2))`
Squaring and adding, we get
`(64)/((a^(2)-b^(2))^(2))+(36)/((a^(2)-b^(2))^(2))=1`
`rArr 100=(a^(2)-b^(2))^(2)`
`rArra^(2)-b^(2)=10" "( :. agtb)`
`rArra^(2)e^(2)=10`
Hence, foci are `(+-sqrt(10),0)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coodition that the straight line lx+my+n=0 is a normal to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Find the slope of normal to the ellipse , (x^(2))/(a^(2))+(y^(2))/(b^(2))=2 at the point (a,b).

Find the condition that the straight line lx+my=n touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1

If the straight line lx + my=1 is a normal to the parabola y^(2)=4ax , then-

If the area of the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 is 4pi , then find the maximum area of rectangle inscribed in the ellipse.

The straight line x + y = a will be a tangent to the ellipse (x^(2))/(9) + (y^(2))/(16) = 1 if the value of a is -

Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the positive end of the latus rectum.

Find the normal to the ellipse (x^2)/(18)+(y^2)/8=1 at point (3, 2).

Show that the line (ax)/(3)+(by)/(4)=c be a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , When 15c=a^(2)e^(2) where e is the eccentricity of the ellipse.

Find the area of the region bounded by the ellipse (x^(2) )/( a^(2)) +( y^(2))/( b^(2))=1