Home
Class 12
MATHS
P is any point lying on the ellipse (x^(...

P is any point lying on the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb)` whose foci are S and S'. If `anglePSS'=alpha and anglePS'S=beta`, then the value of `tan.(alpha)/(2)tan.(beta)/(2)` is

A

`(1+e)/(1-e)`

B

`(1+e^(2))/(1-e^(2))`

C

`(1-e)/(1+e)`

D

1

Text Solution

Verified by Experts


SP+S''P=2a
In `DeltaSPS''`
Perimeter, `2s=SP+S'P+SS'=2a+2ae=2a(1+e)`
Now, `tan.(alpha)/(2)tan.(beta)/(2)=sqrt(((s-b)(s-c))/(s(s-c)))sqrt(((s-a)(s-c))/(s(s-b)))`
`s(-c)/(s)=(2s-2c)/(2s)=(2a(1+e)-2c)/(2a(1+e))`
`(2a+2ae-4ae)/(2a(1+e))=(2a(1-e))/(2ae(1+e))`
`:.tan.(alpha)/(2)tan.(beta)/(2)=(1-e)/(1+e)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 sinalpha=5sin beta , then find the value of ("tan"(alpha+beta)/2)/("tan"(alpha-beta)/2)

If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 with foci S a n d S ' and eccentricity e , then prove that the area of Δ S P S ' is be sqrt(a^2-alpha^2)

Tangents drawn from the point (c, d) to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angles alpha and beta with the x-axis. If tan alpha tan beta=1 , then find the value of c^(2)-d^(2) .

If tan alpha =(1+2^(-x))^(-1) and tan beta =(1+2^(x+1))^(-1) then the value of (alpha + beta) is-

tan (alpha + beta) =1/2, tan(alpha - beta) = 1/3 "then the value of" tan^(2) alpha is-

If the chord joining points P(alpha) and Q(beta) on the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 subtends a right angle at the vertex A(a ,0), then prove that tan(alpha/2)tan(beta/2)=-(b^2)/(a^2)dot

If alpha + beta =(pi)/(2)and beta + gamma =alpha, then the value of tan alpha is -

If sin alpha + sin beta = p "and" cos alpha + cos beta = q "then the value of " "tan" (alpha-beta)/2 will be-

If cos^2 alpha - sin^2 alpha = tan^2 beta , then the value of (cos^2 beta - sin^2 beta) is____

If tan ( alpha-beta) = (sin 2 beta)/(5-cos 2 beta),"find the value of " tan alpha : tan beta.